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Real-Time FPGA-based Detection of Speeded Up
Robust Features using Separable Convolution

Petr Čı́žek Jan Faigl

Abstract—In this paper, we propose a novel architecture for ef-
ficient detection of Speeded Up Robust Features (SURF) for Field-
Programmable Gate Array (FPGA). The main benefits of the
proposed architecture are in real-time low-latency performance
and scalability. The proposed solution provides a significant
acceleration of salient points extraction which is fundamental
image processing technique for vision-based methods including
the simultaneous localization and mapping (SLAM). Based on the
presented practical results, the proposed architecture is capable
of processing streaming image data at the rate of 140 Megapixels
per second which roughly scales from the 640×480@420fps up to
1920×1080@60fps video streams on a low-end, low-cost FPGA
solution (Cyclone V). Moreover, the proposed feature detection
utilizes only about 20% of logic elements of the FPGA which
supports further parallel processing of multiple inputs.

Index Terms—Field Programmable Gait Array, Speeded
Up Robust Features, Separable convolution, Image processing,
Stream Data Processing

I. INTRODUCTION

MACHINE vision becomes a part of industrial applica-
tions, and it constitutes a source of broad information

which resembles the natural way how humans perceive their
environment. Images provide a lot of data, and thus a high-
level processing is necessary to extract semantic information
specific for a particular domain and task. In industrial applica-
tions, Field-Programmable Gate Arrays (FPGAs) play an im-
portant role because of high computational capabilities and low
power requirements [1], which make them especially suitable
for embedded applications [2] like vision based localization
of robotic vehicles [3]. Therefore, FPGA architectures are
investigated to speed up image processing of large data and
provide a real-time response to high frame rates [4], [5].

One of the essential image processing techniques is an
extraction of salient points [6] which are the image distinctive
patterns that are reliably and repeatedly detectable by a feature
extraction method. The existing methods include the Scale
Invariant Feature Transform (SIFT) [7], Speeded-up Robust
Features (SURF) [8] or Features from Accelerated Segment
Test (FAST) [9], etc. From these, the SURF method plays
a prominent role in localization [10] and object recognition
tasks [11]. Since it is still considered as computationally de-
manding, its FPGA implementation is worth of investigation.

SURF extraction has been firstly implemented on FPGA
in 2009 by the authors of [12] and since that, several im-
provements have been proposed, e.g., [13]–[16]. In addition to
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simplifications such as block processing [15], the performance
improvements are achieved by new computational architec-
tures that exploit capabilities of FPGAs. There are three
fundamental principles for designing computationally efficient
image processing architectures: 1) streaming approach [17];
2) avoiding redundant computations [18]; and 3) avoiding
complex memory access patterns, which are typical for image
processing with a convolution computation. A streaming archi-
tecture without redundant computations results in an efficient
processing pipeline with the minimal processing latency [19].
The third principle has been addressed by a separable convo-
lution for the SIFT detection [20] which enables processing
640×480 images at 160 frames per second (fps).

In this work, we consider the principles employed in [19],
[20] and propose a novel architecture for a separable convo-
lution of the SURF detection, which significantly reduces the
computational requirements. Regarding the existing work, the
main contributions of the paper are considered as follows.

• Separable convolution employed in the SURF detection.
• Improved utilization of FPGA by avoiding redundant

computations and abundant buffering of image data.
• Image processing pipeline with unified interfaces based

on the efficient implementation of the r-line buffer with
simultaneous access to individual pixels.

• Efficient implementation of the non-maximum suppres-
sion that avoids a high utilization of memory resources.

• Experimental validation of the developed architecture that
provides processing of 640 × 480 images at 420 fps
and power consumption about 4.76 Watts for processing
1920×1080 images at 60 fps with about 40% utilization
of the logic modules of the low-cost Cyclone V FPGA.

• Detailed description of the proposed architecture allowing
reimplementation of the whole image processing pipeline
using another FPGA systems.

The rest of the paper is organized as follows. Section II
overviews the most relevant approaches for FPGA-based
SURF extraction. The proposed FPGA-based architecture for
the SURF detection is described in Section III. Evaluation
results and comparison to existing FPGA-based solutions
and CPU-based implementation are reported in Section IV.
Concluding remarks are in Section V.

II. RELATED WORK

Probably the first FPGA implementation of SURF extrac-
tion [8] has been proposed by Šváb et al. in [12] which has
been followed by several further deployments, e.g., [13], [21].
The main computational improvements are achieved by ded-
icated units to calculate the Hessian responses for individual
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pixels, but descriptors are computed at the embedded PowerPC
CPU of the utilized board with Virtex 5. The reported achieved
processing is of 1024×768 at 10 fps with about 0.7 ms for
computing a single descriptor. The utilization of the FPGA
fabric is relatively high (above 60%). Even though it provides
better performance than a pure CPU-based approach, it is
far below a GPGPU implementation [22]. It is mainly due
to a direct implementation of parallel computations without
exploiting streaming capabilities of FPGAs.

Improved stream-based SURF extractor is presented in [14]
with the achieved processing speed of the complete features
detection and description at 18 fps for 640×480, while only
the features detection runs at 232 fps for the same reso-
lution. A simplified version of SURF extractor is proposed
in [15] to achieve processing speed of 640×480 images at
324 fps using Virtex 5 at the cost of reduced smaller box-
filter, which provides different results than the reference CPU
implementation [8]. The method also avoids using integral
image in expense of higher FPGA fabric utilization. A recent
implementation of SURF detector on a XC6SLX150T (i.e.,
Spartan 6) running at 66.7 Mhz has been presented in [16]. The
reported detection speed is about 50 fps on 640×480 images;
however, due to unspecified simplifications, the detector also
performs differently than the CPU-based one, which is not
further elaborated in the article.

Stream-based FPGA architectures [17] also improve the
performance of the SIFT [7], which is computationally more
demanding than SURF. Authors of [23] report on SIFT de-
tection combined with BRIEF descriptors fully implemented
on FPGA with the achieved processing speed of 1280×720
images at 120 fps (for the feature detection) and 60 fps
for computing feature descriptors, which provides the overall
throughput 60 fps. In [20], the authors speed up their SIFT-
based image classification pipeline by using separable con-
volution in the SIFT detection phase. They report that the
separable convolution allows to detect SIFT features in 640
× 480 images at 160 fps. A descriptor of single keypoint is
computed in 25.9 µs and the authors consider only keypoints
that could be extracted within 33 ms time window because
their real-time requirements are 30 fps.

It can be observed from the presented overview of the
existing FPGA-based SURF/SIFT extractors that computing
feature descriptors directly on FPGA decreases the perfor-
mance significantly, e.g., from 232 fps to 18 fps for the
approach [14], from 120 fps to 60 fps in [23], and a decrease
from 160 fps to 30 fps is reported in [20]. On the other hand,
a combination of SURF detector with BRIEF descriptors [24],
which is computationally inexpensive, has been proposed by
several authors [25], [26] not only to reduce the memory
and computational requirements, but it may also improve
the feature matching in certain scenarios [27]. Therefore, we
propose to take advantage of System-on-Chip (SoC) solution
and compute feature descriptors using CPU with access to the
memory shared with the FPGA similarly as in [19].

The high-level structure of the proposed architecture is
most similar to the solution presented in [19] except the non-
maxima suppression which is calculated directly as the part
of the feature detection. Moreover, the proposed image pro-

cessing pipeline is designed to exploit streaming capabilities
of FPGA [17]. The proposed design is directly related to the
unified interfaces of particular processing blocks to realize a
direct pipeline with the minimal latency [19]. Besides, we
follow the principles of avoiding redundant computations [18],
which saves logic cells and thus allow their further utilization
in parallel processing. However, the most important part in
convolution-based feature detectors is an organization of the
memory access for computing the response by box-filters.
A separable convolution for SIFT has been utilized in [20] and
in this paper, we propose a separable convolution for the SURF
detection. By combining all these principles and ideas to-
gether, we propose a novel SURF detection architecture which
provides processing speed of 420 fps for 640×480 images,
and thus outperforms all the above-mentioned implementations
not only in processing speed but also in resource utilization.
The proposed framework is presented in the next section and
experimental results together with discussion are reported in
Section IV. A brief overview of SURF is provided in the next
subsection to make the paper more self-contained.

A. Speeded-up Robust Features (SURF)

The SURF extractor [8] is a simplified version of the SIFT
extractor [7] which uses several approximations that allow
acceleration of the feature detection process. The algorithm
starts with computation of the integral image IΣ calculated as

IΣ(x, y) =

x∑
i=0

y∑
j=0

p(i, j), (1)

where p is the image intensity. The integral image allows to
quickly compute any rectangular surface integral using only
four values of the integral image, see Fig. 1a.

(a) (b)

Fig. 1. SURF principle (a) The image integral over the white area Σ is
computed as Σ = IΣ(D) − IΣ(B) − IΣ(C) + IΣ(A) using the values of
the integral image (b) SURF detection based on approximation of the Gaussian
kernels [8] by the response of the box-filters. The response is computed using
the integral image with the access only to the cells marked by the color disks.

Then, the feature detection is performed by finding a local
maxima of image Hessian determinants approximated by

H(x, y, σ) =

∣∣∣∣ Dxx(x, y, σ) Dxy(x, y, σ)
Dxy(x, y, σ) Dyy(x, y, σ)

∣∣∣∣ , (2)

where Dxx(x, y, σ) represents a convolution of the image with
second-order derivative of the Gaussian of the variance σ
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Fig. 2. Proposed FPGA-based feature extraction architecture with the FPGA-based feature detection image processing pipeline (the upper blue row) and
computation of feature descriptors on the embedded CPU (the bottom yellow row)

approximated by box-filters. Fig. 1b shows Gaussian kernels
together with their box-filter approximations used in SURF [8].

A scale-space is constructed using multiple size filters
arranged in octaves and intervals to achieve scale invariance.
Typically used filter sizes are listed in Table I.

TABLE I
FILTER SIZES

Interval 1 Interval 2 Interval 3 Interval 4

Octave 1 9 15 21 27
Octave 2 15 27 39 51
Octave 3 27 51 75 99

Once the Hessian approximation in the scale-space is cal-
culated, local maxima are selected as feature points through
the process of non-maxima suppression done within the 26-
neighborhood of candidate point in the scale-space.

Next, the feature descriptor is assembled from the square
shaped neighborhood around the feature point oriented ac-
cording to the dominant direction based on responses of
Haar wavelet filters centered around the feature point.
This neighborhood forms a grid of the size 4 × 4 regu-
larly sampled by Haar wavelet filters which assigns each
square a tuple dx and dy responses. Vectors consisting of∑
dx,
∑
dy,
∑
|dx|,

∑
|dy| form the description of each sub-

square which are then chained into 64-dimensional SURF
descriptor of floating point numbers. Nevertheless, the results
of the feature detection can be combined with any other feature
descriptor like, e.g., BRIEF [24] which is utilized in this work.

III. PROPOSED FPGA-BASED SURF DETECTION

The overall schema of the proposed stream-based FPGA
architecture for the SURF detection is shown in Fig. 2. The
proposed architecture consists of Video sync core, which
provides the stream of visual data, Preprocessor core that cal-
culates the integral image necessary for the feature detection.
In parallel to the feature detection, the data are buffered into
the frame buffer in the memory of the processor subsystem
because the proposed FPGA architecture concerns only the
feature detection and leaves the feature description on CPU.

There are two main reasons for separating the computation
of feature descriptors. First, each point in the image has to

be checked for the presence of the feature point; however,
only a limited number of points are selected for feature
description which can be effectively handled by the CPU.
Second, a feature description is usually assembled from a
larger area around the feature point which requires irregular
memory access patterns. Regarding the image processing, the
main limitations of nowadays FPGAs are insufficient memory
resources. Therefore, it seems more suitable to dedicate cal-
culation of feature descriptors on the CPU, especially for the
low-cost System-on-Chip (SoC) solution with shared memory.

A. Stream-based architecture for feature detection

The main idea of the proposed stream-based image feature
detection is to decide whether the currently processed image
point is a feature or not with each tick of the architecture. The
architecture is optimized to process the digital video signal,
which comprises a series of successive images where every
video frame consists of active pixels and blanking display area.
Individual lines are discriminated by the horizontal synchro-
nization h_sync pulses and individual frames are separated
by the v_sync pulses. The image data stream is accompanied
by x_cnt and y_cnt signals determining coordinates of
currently processed pixel. All data throughout the feature
detection pipeline are synchronized with the pixel_clk and
are valid on its rising edge. No other clock signals are used.

B. Image window operations

Feature detection belongs to the group of window image
processing operations [14]; hence, to identify image features
it is necessary to assess each point in the image with a response
function value. Access to the rectangle area r × c around the
candidate point is necessary for the calculation of the feature
response function. The true parallelism of FPGA is usually
exploited to buffer the image data and form a window to
access all of them simultaneously. However, such an approach
becomes soon intractable as the resource utilization grows
quadratically with an increasing size of the image window.

This issue is addressed by the decomposition of the calcu-
lation of the SURF box-filter responses into the vertical and
horizontal components. Henceforth, the FPGA utilization is
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only O(n) and not O(n2) as for an ordinary direct parallel
implementation of the full window buffering. The proposed
separable convolution described in Section III-D depends on
efficient accessing the vertically aligned pixels. The access is
realized by the proposed implementation of the r-line buffer.

C. r-line buffer

The r-line buffer core is utilized for accessing to r verti-
cally aligned pixels which requires r − 1 lines of the image
to be buffered into the internal memory resources of the
FPGA, i.e., BRAM. The core comprises of r−1 chained dual-
port single-clock memories with buffered output with write
address given by the x_cnt signal provided by the Video
sync core and read address determined by asynchronously
calculated x_cnt+2 (see Fig. 3). The aggregated outputs of
all BRAMs and the input pixel provide simultaneous access to
the r vertically aligned pixels d_out 0..r-1. Hence, only
the respective number of the individual BRAMs are used for
the image width w and bit width of the image data.

BRAM 1read_addr

data_in data_out

pixel_data

write_addr

x_cnt

d_out 0
d_out 1
d_out 2

d_out r-1
BRAM 2read_addr

data_in data_out
write_addr

2
BRAM r-1read_addr

data_in data_out
write_addr

...

Fig. 3. Architecture of the r-line buffer core

The r-line buffer is utilized for accessing the integral image
values. Prior the buffering, the integral image calculation
requires simultaneous access to the given pixel p(i, j), the
value of IΣ(i, j − 1), and the horizontal partial sum of all
pixels of the row i. The implementation of the calculation uses
one FIFO memory to buffer the resulting integral image values
for the duration of one line to provide access to IΣ(i, j − 1).
The horizontal buffer is incremented with the value of p(i, j)
with each tick and resets on the h_sync signal. The resulting
integral image value is given as the sum of the given pixel, the
horizontal buffer, and the buffered one-line-delayed integral
image value.

D. Separable Convolution of box-filters

The main source of the performance improvements in the
SURF detection is the proposed implementation of the separa-
ble convolution of box-filters implemented with the proposed
r-line buffer cores. The idea of the proposed architecture is
visualized in Fig. 4 and it works as follows.

Let W be the window of the size r × c necessary for
simultaneous access to all the pixels required for calculation of
the response function according to the particular filter size (see
Table I). Then, the individual box-filter responses are given as

Dxx = (W97 −W92 −W07 +W02)− 3 · (W67 −W62 −W37 +W32),

Dyy = (W79 −W29 −W70 +W20)− 3 · (W76 −W26 −W73 +W23),

Dxy = (W44 −W41 −W14 +W11) + (W88 −W85 −W58 +W55)

− (W84 −W81 −W54 +W51)− (W48 −W45 −W18 +W15),

where Wij denotes the integral image value at the offset i, j
in the box-filter. As it can be seen in the equations and also

Fig. 4. Proposed assembly of the Hessian determinant calculation. The
sampled points for a 9 × 9 box-filter response calculation are separated into
vertical (s1, s2, s3) and horizontal (Dxx, Dyy , Dxy) components.

in Fig. 4, it is possible to separate the sampled points into
three partial sums

s1 = W02 −W07,

s2 = W00 − 3 ·W03 + 3 ·W06 −W09,

s3 = W01 −W04 −W05 +W08,

and utilize these in the calculation of the box-filter responses:

Dxx = s1(0)− 3 · s1(3) + 3 · s1(6) + s1(9),

Dyy = s2(2)− s2(7),

Dxy = s3(1)− s3(4)− s3(5) + s3(8),

where the numbers in the parentheses (j) denotes the j-th
sampling coordinate. Such a scheme can be generalized for a
box kernel of arbitrary size.

For the feature score calculation given by (2), it is necessary
to get simultaneous access to r vertically aligned integral im-
age data using r-line buffer core and then only 3 shift registers
of the length c are necessary for buffering the s1, s2, s3 partial
sums for feature response function calculation of an arbitrarily
large SURF window. Thus, the Hessian value of r×c window
is obtained with the latency of r ·w/2+scalc+c+dcalc+Hcalc

where r is the height of the window, scalc is the depth of the
pipeline computing the 3 partial sums s1, s2, s3, c is the width
of the window (which stands for the depth of the shift register
necessary for buffering the s-values), dcalc is the depth of the
pipeline used for calculation of the box-filter responses, and
Hcalc is the latency of the Hessian value calculation.

In the proposed implementation, the s-values and box-filter
responses are computed in two pipelined steps, and the Hessian
response value [8] given as H = DxxDyy − (D2

xy −D2
xy/8)

is calculated in 3 pipelined steps as visualized in Fig. 5.
We pipeline each step to allow higher frequencies, and thus
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Fig. 5. Architecture of the pipelined Hessian calculation

improve the throughput of the whole architecture. Note, the
whole feature detection architecture uses integer numbers
with appropriate bit-width of each signal. The bit-width of
individual signals for processing of 1920×1080 images does
not exceed the range of 32-bit signed integer.

E. Scale-space construction and non-maxima suppression

The major limitation of the stream-based SURF detection on
FPGAs is a lack of sufficient internal memory resources for
storing integral image and Hessian values. For non-maxima
suppression on feature detectors, a typical solution is to
buffer feature response values and their comparison in an 8-
neighborhood [19]. In SURF detection, the Hessian values are
compared to the 26-neighborhood in 3 × 3 × 3 box because
of the scale-space [8]. The values are 32-bit integers and
further memory resources are necessary to buffer the values
and compare them. This is intractable for low-cost FPGAs as
the utilization of the integral image itself is resource greedy.
Therefore, we propose a novel scheme to immediately select
the maxima during the feature detection process, see Fig. 6.

(a) (b)

Fig. 6. Principle of the proposed non-maxima suppression: (a) sampling points
for the Hessian calculation on all four scales (red) for one particular examined
pixel (blue); and (b) separable windows stacking and calculation reuse for non-
maxima suppression calculation. The yellow area is the neighborhood for the
non-maxima suppression to select if the examined pixel is a feature point.

The proposed separable convolution architecture allows to
utilize the retained FPGA resources for calculation of response
triplets which are then buffered for the appropriate number of
steps to gain access to all the values necessary for calculation
the non-maxima suppression simultaneously. Each triplet is
formed by the same scale box kernels displaced vertically by
one pixel up and down. Therefore, only two additional FIFOs
for buffering the integral image in r-line buffer are necessary
in contrast to 8 FIFOs that would be necessary to buffer the
Hessian values on the four scales. If a feature is detected,

its x, y coordinates are assigned in the Detector interface
core. The coordinates are derived from the current x_cnt and
y_cnt by subtracting the induced ∆x and ∆y pixel latencies
which are, in our case, deterministic.

The Detector interface core act as a memory mapped slave
connected directly to the system bus. Hence, it allows to read
out the position of individual features by CPU in either busy
wait or it can generate an interrupt signal. The system bus is
application specific. In our implementation, the AXI-4 system
bus is used with the hard CPU system and Avalon system bus
with the soft CPU system, see Section IV.

F. Feature description

We propose to take an advantage of the System-on-Chip
(SoC) solution and compute feature descriptors using CPU
with the access to the memory shared with the FPGA. A large
portion of the image needed for the feature description is
buffered in the off-chip memory using the Memory buffer
core with the direct memory access, and thus the system bus
is effectively shared between the CPU and Memory buffer.

The feature description is done as soon as the feature is
detected and there is a sufficient portion of the image inside
the frame buffer. Such a simultaneous processing yields low-
latency which is crucial in mobile robotic applications [19];
however, depending on the number of detected features and
their distribution in the image, the latency of the feature de-
scription is not deterministic. Therefore, it might be necessary
to cut the calculation after the specified period as in [20].

Note, in our work, we focus on acceleration of SURF
detection whereas we do not implement the SURF description.
However, we exploit the combination of SURF detector and
BRIEF [24] feature descriptor to provide a complete solution
of the feature extraction under real-time constraints. Moreover,
in certain scenarios, the combination of SURF detector and
BRIEF descriptor outperforms the SURF extraction [27].

IV. RESULTS

The proposed architecture has been primarily deployed on
the FPGA development board Terasic DE0-Nano-SoC that
comprises of Cyclone V FPGA and ARM Cortex A9 CPU with
shared memory and features enough resources for processing
1920×1080 images by the proposed solution. Besides, we also
consider even lower-cost FPGA solution with Soft-CPU. The
main features of the utilized boards are summarized in Table II.
Note, the logic utilization of Cyclone V is referred to the
number of utilized Adaptive Logic Modules (ALMs).1

The resource utilization of the proposed SURF detection
pipeline (i.e., the upper row in Fig. 2) with the settings of 1
Octave and 4 Intervals and also the whole features extraction
together with the CPU-based computation of the descriptors
is listed in Table III. The numbers were attained after the
place and route process. The required resources are only
slightly influenced by increasing the resolution as only the
memory limit for the used BRAMs need to be doubled from

1Each ALM can support up to eight inputs and eight outputs, contains two
or four register logic cells and two combinational logic cells, two dedicated
full adders, a carry chain, and a register chain.
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TABLE II
PLATFORMS USED FOR DEPLOYMENT OF THE PROPOSED ARCHITECTURE

Hard-CPU

FPGA: Cyclone V, Type CSEMA4U23C6N
15880 ALMs; 2460 kBit BRAMs; 84 DSPs
Approximately 40000 Logic Elements (LEs)

CPU: Dual-core ARM Cortex A9
925 MHz, 1 GB DDR3 SDRAM

Soft-CPU
FPGA: Cyclone IV, Type EP4CE22F17C6N

22320 LEs; 594 kBit BRAMs
CPU: Soft-CPU, NIOS, 150 MHz, 32 MB SDRAM

TABLE III
FPGA UTILIZATION OF THE PROPOSED ARCHITECTURE

Image resoluion 640 × 480 1920 × 1080

SURF detection only
ALMs 3 413 (21%) 3 479 (22%)
Total registers 7 783 7 791
BRAM [bits] 985 566 (36%) 1 968 606 (71%)
DSPs 24 (of 84 available) 24 (of 84 available)

Whole feature extraction including description
ALMs 6 542 (41%) 6 591 (42%)
Total registers 12 732 12 811
BRAM [bits] 1 544 102 (55%) 2 527 142 (91%)
DSPs 24 (of 84 available) 24 (of 84 available)

The utilization of all available resources are percentage points in parentheses.

1024 entries for 640 × 480 to 2048 entries for 1920 × 1080.
The rest of the architecture remains completely intact. This
also shows the effectiveness of the proposed r-line buffer
implementation as only the BRAM components are influenced
by the resolution.

In the case of the complete feature extraction, additional
resources of the FPGA are needed for implementation of the
memory controller for transferring data from the input source
to the memory. The number of utilized ALMs is almost dou-
bled and about additional 20% BRAM (of available BRAM) is
needed; however, the implementation of the memory controller
is independent on the resolution. Moreover, computation of
feature descriptors completely resides in the CPU, and thus it
is independent on FPGA. Therefore, the proposed architecture
scales well with the resolution and the only limitation of the
current FPGAs is available BRAM.

Processing speed and latency

The maximum frequency of 136.3 MHz has been reported
for the proposed SURF detector post-mapping the design into
the FPGA by the TimeQuest timing analyzer. This is also the
maximum throughput of the proposed architecture, and thus it
can process 136 Megapixels per second which roughly scales
from 640×480 at 420 fps up to 1920×1080 at 60 fps. The
processing latency is 197.4 µs which is also the time to know
coordinates of all features in the image after the readout of
the last pixel of the camera sensor.

The feature description is done in parallel with the feature
detection, and thus whenever a feature is available together
with the respective portion of the image in the frame buffer,
the feature descriptor is calculated. The utilized 32-Byte long
version of the BRIEF descriptor comprises a set of 256
pairwise comparisons and the estimated calculation time per

single descriptor is 15.9 µs, which is 6.36 ms for the average
400 features per image.

The proposed architecture is optimized for real-time pro-
cessing of streamed visual data and the blanking area during
the time of vertical synchronization usually provides enough
time to calculate descriptors of detected features before the
next image is started. In the case that features are not uni-
formly distributed and/or there are more than average features
in the images, the description phase is terminated prema-
turely. Such a behavior maximizes the throughput through
the pipeline which is beneficial, e.g., for rapid camera pose
tracking in robotics. However, it is application specific and
if such a behavior is not desirable, the image processing can
be interrupted or the next frame can be skipped to finish the
calculation of the descriptors. Notice, for real-time processing,
a suitable trade-off is to design the computational resources for
a typical situation rather than for the worst-case, and therefore,
the proposed solution is sufficient for 400 features per image.

Performance comparison

The proposed architecture has been compared with other
published FPGA-based implementations of the SURF detec-
tion and extraction briefly introduced in Section II. In partic-
ular, the reported performance indicators on implementations
for Virtex 5 [12], Spartan 6 [14], [16], and Virtex 6 [15] have
been included in the comparison. The achieved processing
speeds and utilization of FPGAs are reported in Table IV.
Note, the individual devices differ in the organization of the
FPGA fabric and amount of resources. Whereas Xilinx Spartan
and Virtex architectures features Logic Elements (LE) with
6-input LUTs, the Altera Cyclone V features Adaptive logic
Modules (ALM) with 8 input LUT each. Thus one ALM is
approximatelly equivalent of 1.25 LE. Regarding the results,
the proposed SURF detection approach outperforms all other
approaches in both the processing speed and FPGA utilization.

Precision of the FPGA-based SURF detection

The correctness of the results provided by the proposed
SURF detection pipeline has been verified against the CPU-
based OpenCV [28] implementation with same parametriza-
tion (1 Octave, 4 Intervals) using a set of digital image patterns
of the dataset [29]. The proposed FPGA implementation
provides the same results as its CPU-based counterpart which
is not surprising as there are no simplifications introduced in
the process of feature detection. A demonstration setup using
online detection by a camera module is depicted in Fig. 7.

Contrarily, most of other FPGA-based implementations
introduce simplifications into the SURF detection which re-
sults in different detections in comparison to the original
approach [8]. In [12], a fixed point arithmetic is used which
slightly lowers the repeatability and distinctiveness. Fewer bits
than the required are used for the integral image in [14] to save
the memory resources. In [16], unspecified simplifications are
made in the detection process and the provided results are
different in comparison to the CPU-based approach.

Deployment of the Proposed Architecture with Soft CPU

In addition to the Cyclone V FPGA, we further deployed
the proposed architecture on a less powerful platform Terasic
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TABLE IV
PERFORMANCE COMPARISON OF SURF DETECTION AND DESCRIPTION

Method Num. Resolution Det. Det.+Desc. Device Slices BRAM Freq.
scales [fps] [fps] LEs (ALMs) [kBit] [MHz]

Šváb et al. (2009) [12] 8 1024×768 10 10 Virtex 5 16 548 2 016 100.0
Pohl et al. (2014) [14] 4 640×480 232 18 Spartan 6 15 945 4 680 79.4
Pohl et al. (2014) [14] 4 1920×1080 24 — Spartan 6 12 032 4 284 79.4
Shene et al. (2016) [15] 1 640×320 324 324∗[ Virtex 6 39 276 ≤540 100.0
Chen et al. (2016) [16] 4 640×480 50 — Spartan 6 37 662 1 872 66.7

Proposed Hard-CPU 4 640×480 420 60‡ Cyclone V 8 177 (6 542) 1 544 136.3
Proposed Hard-CPU 4 1920×1080 60 60‡ Cyclone V 8 238 (6 591) 2 527 136.3

Proposed Soft-CPU 1 640×480 443 30[‡ Cyclone IV 5 062 411 142.0
Proposed Soft-CPU 1 1920×1080 60 30[‡\ Cyclone IV 5 104 655\ 142.0

∗A simplified 3 × 3 version of the SURF descriptor with fixed orientation
[Only one scale is used for the SURF detection.
‡BRIEF32 used as a feature descriptor and computed on the CPU of the SoC architecture.
\Only 24 bits per pixel and one scale is utilized to fit the design into the architecture.

Fig. 7. Online feature detection. On the right there is a camera module with
Cyclone IV FPGA and MT9V034 camera. The detected points visualized as
black crosses are directly injected into the 640×480 video stream at 60 fps.

DE0-Nano with the Cyclone IV FPGA and without the hard
CPU to demonstrate advantages of the proposed architecture.
In this case, the FPGA has two times less logic elements and
four time less memory resources which are essential for the
SURF detection and the CPU is implemented as a software
core within the FPGA and it runs at 150 MHz, see Table II.

The limited BRAM resources allow deployment for only
one scale as in [15]. The results in Table IV show that
the architecture outperforms all the other approaches in the
feature detection as the timing analysis reports the maximum
frequency of 142 MHz. The soft-CPU is clocked only at
150 MHz, and thus the feature description is much slower
than in [15] with FPGA-based computation of the descriptors.

In the case of 1920×1080 images, the limited BRAM
resources allow us to buffer only 24 bits per pixel for having
the persistent integral image for 12 lines necessary for the
calculation of 9 × 9 window response function value. With
this simplification, even the limited Cyclone IV with soft-
CPU is capable to provide the detection speed of 60 fps for
1920×1080 resolution using the proposed architecture.

A. Discussion

The main limitation of the current SURF extraction de-
ployment on FPGAs is a lack of sufficient internal memory
resources given the integral image values occupy roughly 4

times more memory than the source image. E.g., even for small
image of 640× 480 the integral image values can reach up to
value 78336000 which representation needs 27 bits. This forms
a major limitation on low-cost FPGAs as they are capable of
storing only a few lines of integral image in BRAM.

On the other hand, the adder tree structure presented in [15],
which computes the integral image values on demand, together
with the herein proposed separable convolution approach may
significantly reduce the number of necessary resources. This is
also tightly related to the problem of the descriptors calculation
as it can be done either directly in hardware [14], [15] or using
CPU as in the proposed solution.

The achieved performance allows to employ the proposed
solution in real-time processing of frames from multiple image
sensors using the same FPGA fabric with similar power
requirements. For the lower resolution, the proposed SURF
detection can easily process frames from two or four image
sensors that are sequentionaly fed into the Video sync core.
Moreover, the images can even have different resolution as the
whole streamed architecture is controlled only by the h_sync,
v_sync, and pixel_clk signals. The only processing lim-
itations is the calculation of descriptors that is made on the
relatively slow CPU. However, two cores are available on the
utilized DE0-Nano-Soc board, and thus two image sensors
with 60 fps or four sensors at 30 fps can be processed by
the proposed solution and particular hardware.

Besides, more powerful FPGA fabrics such as the recent
Spartan 7 can be easily utilized with the proposed architecture,
as only the input signals and the BRAM component in the
r-line buffer need to be adjusted for a new hardware. The
resource friendly architecture allows deployment of several
processing pipelines and images from multiple sensors can
be processed in parallel at the high frame rate.

V. CONCLUSION

An efficient FPGA architecture for SURF detection is
presented in this paper. The main improvements are in the
proposed separable convolution combined with the efficient
implementation of the r-line buffer together with the non-
maxima suppression scheme to avoid redundant computations
and abundant buffering of image data during computing the
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responses of box-filters. Moreover, the proposed interfaces of
the processing blocks in pipeline support streamed processing
with almost zero latency. Overall, the proposed architecture
provides real-time performance in the feature detection.

The feature descriptors are computed on the CPU part of
the processor-centric SoC design, which provides flexibility
to easily use different descriptors for further applications, as
an efficient implementation of the proper FPGA architecture is
time-consuming. Besides, using computationally cheap BRIEF
descriptors on the CPU does not slow down the image ex-
traction significantly. In the case of processing 1920×1080
images, the same processing speed of 60 fps is achieved. The
proposed architecture requires only a small portion of FPGA
resources, and therefore, it is suitable for processing multiple
inputs. On the other hand, it also allows to further deploy
efficient architecture for computing SURF descriptors directly
on FPGA fabric, which is a subject of our future work.
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