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An Approximate Solution of the Multiple Watchman
Routes Problem with Restricted Visibility Range

Jan Faigl

Abstract—In this paper, a new self-organizing map (SOM)
based adaptation procedure is proposed to address the Multiple
Watchmen Route Problem with the restricted visibility range
in the polygonal domain W . A watchman route is represented
by a ring of connected neurons weights that evolves in W
while obstacles are considered by approximation of the shortest
path. The adaptation procedure considers a coverage of W by
the ring in order to attract nodes towards uncovered parts of
W . The proposed procedure is experimentally verified in a set
of environments and several visibility ranges. Performance of
the procedure is compared with the decoupled approach based
on solutions of the Art Gallery Problem and the consecutive
Traveling Salesman Problem. The experimental results show
suitability of the proposed procedure based on relatively simple
supporting geometrical structures enabling application of SOM
principles to watchman route problems in W .

Index Terms—Watchman route problem, Self-organizing maps

I. INTRODUCTION

Self-Organizing Maps (SOM) have been already applied to
various combinatorial routing problems [32], [14], [23], [34].
The most representative problem is the Traveling Salesman
Problem (TSP), which deals with finding a shortest tour that
visits given set of cities. The TSP has been addressed by
several SOM algorithms, e.g. [33], [9], [6], [10]. However,
these approaches are mainly focused on the Euclidean TSP in
which distances between neurons and cities can be efficiently
computed as the Euclidean distance, while non-Euclidean
problems are out of the community interest, probably due to
difficulty of distance determination [27]. On the other side,
techniques from the operational research provide solutions for
the non-Euclidean TSP, where distances between cities are
precomputed and stored in the so-called distance matrix.

The Watchmen Route Problem (WRP) [8] is a routing
problem in which points that have to be visited are not
explicitly prescribed. The problem is to find a closed shortest
path in a polygon P such that all points of P are visible from
at least one point at the path. Shermer called this problem
hybrid visibility problem [30] because beside the visibility
concept (the visibility graph), other geometric or conceptual
properties are involved in the problem. The difficulty of the
problem is that distances between points to be visited cannot be
precomputed, because the points are not known or the number
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of possible positions is too high. Therefore a simplification of
the problem or approximations should be considered. In [5],
Aras et at. note that neurons of SOM tend to learn the
properties of the underlying distribution of the space in which
they operate. Such a feature can be advantageous in the hybrid
visibility problems, however SOM has not yet been applied to
this type of problems.

The WRP is NP-hard for a polygon with holes, and the
problem is studied for restricted classes of polygons, for which
approximate and optimal algorithms have been found [20],
[16]. The problem can be considered as a variant of the well
known Art Gallery Problem (AGP) posed by Klee in 1973.
Watchmen (guards) are static in the AGP, and the problem is
to minimize the number of guards. Once the guards are found,
a watchman route can be found as a solution of the TSP where
guards denote cities.

The Multiple Watchman Routes Problem (MWRP) deals
with several watchmen and can be formulated for two criteria:
the minimization of the total travelled path (MinSum) and the
minimization of the longest route (MinMax). Both variants
are known to be NP-hard for a polygon with holes. Probably
the first heuristic approach for the MWRP in the polygonal
domain has been presented in [26]. The algorithm is based on
a set of static guards that are used to determine the minimum
spanning tree from the pairwise shortest paths between guards.
The tree is split to construct routes that are shortened by
vertex substitutions and removing of redundant vertices. The
heuristic algorithm is able to address both criteria (MinSum
and MinMax). Even though the algorithm has been used
in several problems, only an unrestricted visibility has been
considered, which limits the real applicability of the algorithm.

Capabilities of real sensors, like cameras or range finders,
are limited in resolution, sensing range or frequency, therefore
the problem to “see” an object or workspace is studied for
various sensing constraints [28], [36]. If the visibility range
is restricted to a distance d, two variants of the WRP can be
found in the literature [35]. The d-watchman route problem is
a variant to see only the boundary of the polygon, while the
d-sweeper route problem is to sweep a polygonal floor using a
circular broom of radius d, so that the total travel of the broom
is minimized [24]. In these problems, the notion of d-visibility
is considered, i.e. two points p and q in a polygon P are called
d-visible, if the line segment joining them is contained in P
and the segment length is less or equal to d.

The MWRP with d-visibility is addressed in this paper.
Particularly the problem is formulated as follows: for a given
polygon W (possibly with holes) find k closed paths in W
considering MinMax criterion such that all points of W are
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d-visible from at least one point at the paths. The proposed
algorithm uses Kohonen’s self-organizing map and provides
approximate solution of the problem. To our best knowledge
the proposed algorithm is the first application of SOM to the
WRP and it is probably the first soft-computing approach
to address the MWRP with d-visibility in the polygonal
domain. The algorithm is based on the adaptation schema for
the Multiple Traveling Salesman Problem (MTSP) with the
MinMax criterion [34], which has been applied only to the
Euclidean TSP. Therefore to apply the schema in the polygonal
domain it is necessary to consider a path among obstacles.

The rest of this paper is organized as follows. The next
section presents used notation and terminology. Section III is
dedicated to the related work in which selected reference algo-
rithm is described in Section III-A, the used SOM adaptation
procedure in Section III-B and its extension to the polygonal
domain in Section III-C. The main contribution of this paper,
an adaptation procedure for the WRP with d-visibility, is
presented in Section IV. Its MWRP variant is described in
Section V. Experimental results verifying the proposed WRP
and MWRP algorithms are presented in Section VI together
with a comparison with the reference (AGP+TSP) approach.
A discussion of the proposed algorithms and further possible
improvements are presented in Section VII. Conclusions are
summarized in Section VIII.

II. USED TERMS AND NOTATION

SOM is considered in the polygonal domain W , therefore
few terminology notes are presented in this section to clarify
used terms and symbols for the supporting geometrical struc-
tures.

A world is represented by a polygonal mapW consisting of
NW vertices.W is a closed, multiply connected region, whose
boundary is a union of NW line segments, forming h+1 closed
polygonal cycles, where h is the number of holes (obstacles).
A distance between two points inside W is a length of a path
among obstacles that can be a straight line segment or consists
of vertices. Thus, a path between two points s and t consists
of a finite number of line segments joining the points and
vertices.
W can be divided into a set of non-overlapping convex

polygons that are formed from vertices. Such convex polygons
are called cells and represent convex polygon partition of
W , i.e. each cell C forms a closed polygonal cycle of line
segments joining vertices. A line segment is called diagonal
if it connects two nonadjacent vertices and it is contained in
W . A point inside W is always inside some cell and a path
between two points s ∈ Cs and t ∈ Ct can be constructed from
the shortest path between vertices of Cs and Ct. Weights of
the ith neuron represent a point νi (called node) that lies inW ,
therefore νi is always inside some cell. Such a cell containing
the node ν is denoted as Cν .

An additional used supporting division ofW is a triangular
mesh that is formed from the vertices of W and additional
points placed insideW . More formally, a triangular mesh T is
a triplet T = (V ,E,T ), where V is a set of mesh vertices, E
is a set of edges e ∈ E, e = (vi, vj), vi, vj ∈ V , vi 6= vj , T is

a set of triangles T ∈ T , T = ({vi, vj , vk}, {ei, ej , ek}) where
vi, vj , vk ∈ V , ei, ej , ek ∈ E, ei = (vk, vi), ej = (vi, vj),
ek = (vj , vk). Moreover, the mesh vertices are used to find
a convex cover set of W that is a collection of convex sub-
polygons of W whose union is exactly W .

To avoid possible confusions, the term mesh vertices is used
for the vertices of T and the term map vertices is used for
the vertices of W in cases where it can be misinterpreted. In
all other cases, the single word vertices represents the map
vertices. The term node is strictly reserved to the values of
weights of a neuron.

An overview of the used symbols is shown in Table I.

TABLE I: Used symbols
Symbol Description
W ⊂ R2 a polygonal domain representing the guarded world
NW a number of vertices of W
d a visibility range of watchman or guard
n a number of guards/cities in the related AGP/TSP
m a number of neurons representing a route
k a number of salesmen/watchmen in the MTSP/MWRP
|s, t| the Euclidean distance between points s and t
|S(vi, vj)| a length of the shortest path between two vertices of W
P a set of convex polygons
vi a vertex of the polygonal domain W
νi a node representing weights of the ith neuron
T a triangular mesh of W , T = (V ,E,T )
NT , NV a number of triangles and a number of mesh vertices
NC a number of convex polygons of a cover set
G,µ, α parameters of the used SOM adaptation schema

III. RELATED WORK

A. Reference Algorithm

A decoupled approach (AGP+TSP) represents a feasible
way how the WRP can be solved. The main advantage
of the approach is ability to deal with d-visibility, because
computationally feasible algorithm that will directly provides
solutions of the WRP with d-visibility in the polygonal domain
is not known. A sensor placement algorithm [19] is used to
find a solution of the AGP. The algorithm provides guards with
d-visibility and it is based on a deterministic decomposition
of a polygon W into a set of convex polygons. Each convex
polygon is guarded by one guard, and to satisfy d−visibility,
a distance from the guard to a vertex of the guarded polygon
has to be less than d. The primal convex partition is found by
Seidel’s algorithm [29] and if a convex polygon is too large,
it is divided into convex sub-polygons, until each sub-polygon
can be covered by one guard with d-visibility. The complexity
of the algorithm is linear with the number of found guards [19].

A solution of the WRP is found as a solution of the TSP
on a graph G(V,E), where V denotes the found guards and
E is a set of edges with costs derived from the length of the
shortest path between guards. The paths are found by Dijkstra’s
algorithm in O(nne log(n + NW)) on the visibility graph,
which is found in O((n + NW)2) [25], where NW denotes
the number of polygon vertices, n is the number of guards
and ne is the number of edges of the visibility graph. Without
loss of generality G(V,E) is assumed to be complete. The
TSP can be solved exactly by the Concorde solver [3].
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B. SOM Adaptation procedure for the TSP

The adaptation schema for the TSP [33] is used as the
main adaptation schema for the new proposed algorithm for
the WRP. A detailed overview of the schema is presented
in the next paragraphs, because the schema is applied in the
polygonal domain W . The overview provides insight how the
procedure relates with the used approximations and supporting
geometric structures that enable application of SOM in W .
Thus, a reader can skip this part and continue the reading from
Section III-C in which the used approximation of the shortest
path is described.

The used two-layered competitive learning network consists
of two dimensional input vectors and an array of output units.
An input vector i represents coordinates (ci1, ci2) of the city
ci and weights νj1, νj2 can be interpreted as coordinates of
the node νj , see Fig. 1. Connected nodes form a ring that
evolves in the problem domain according to the following self-
organizing adaptation procedure.
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Fig. 1: Schema of the two-layered neural network and associ-
ated geometric representation.

The network is initialized with small random connection
weights and cities are then sequentially applied to the network
in a random order. For a given city, the output nodes compete
to be the winner node according to their distance to the city.
The weights of the winner node and its neighbouring nodes are
updated in order to get closer to the presented city according to
the neighbouring function f . The adaptation function moves a
node towards the city ci by the rule ν′j = νj+µf(G, l)(ci−νj),
where µ is the fractional learning rate. The used neighbouring
function is f(G, l) = exp(−l2/G2) for l < 0.2m and
f(G, l) = 0 otherwise, where G is the gain parameter, l is the
distance (in the number of nodes) of a node from the winner
measured along the ring, and m is the number of nodes in the
ring that is set to m = 2.5n, where n is the number of cities.
The gain G is decreased after each complete presentation of the
cities to the network according to the gain decreasing rate α,
i.e. G = G(1−α). Authors of [34] recommend to set the initial
value of G according to the formula G0 = 0.06+ 12.41n and
values of the learning and decreasing rates µ=0.6 and α=0.1.
The presentation of all cities to the network is repeated until
all cities have their winner nodes closer than given threshold.

An inhibition mechanism [33] guarantees that a distinct
winner node is found for each city during one adaptation step.
So, a city tour can be found by traversing the ring at the end
of each adaptation step. The final length of the city tour is
computed as the sum of city–city distances.

1) The SOM procedure for the MTSP-MinMax: In MTSP,
the problem is to find a tour for each of k salesmen, thus
an individual ring of nodes is created for each salesman. All
tours start and finish at the same city that is called depot. The
adaptation procedure must ensure that all tours are connected
with the depot, therefore a winner node from each ring is
selected and adapted to the depot at the beginning of each
adaptation step. After that, other cities are presented to the
network in a random order and a winner node is selected from
all non-inhibited nodes like in the TSP variant. To address
the MinMax criterion authors of [34] proposed a competitive
rule ν? = argminν |c, ν| · (1 + (lν − lavg)/lavg), where |c, ν|
denotes the Euclidean distance between the city c and the node
ν, lν is the length of the ring into which the node ν belongs
and lavg is the average length of the rings. The rule prefers
nodes from shorter rings and it leads to minimize the longest
tour. Same number of neurons is used in all rings and it is set
to m = 2.5n/k.

The SOM adaptation procedure relies on efficient deter-
mination of the winner node that uses a node–city distance.
The adaptation of a node towards the presented city uses a
node–city path along which the node is moved. Moreover, the
shortest path between two nodes is needed to compute a length
of the ring in the MTSP-MinMax. A suitable approximation
of the shortest path in W is described in the next section.

C. Approximation of the Shortest Paths

The node–city and node–node distances (paths) are needed
to use the SOM algorithm for the MTSP-MinMax in W . The
exact determination of the node–city distance and path can
be supported by the precomputed Shortest Path Map (SPM),
which is a planar division with respect to a point (city). The
SPM provides the shortest distance to the point in O(logNW)
and the shortest path in O(logNW + l), where NW is the
number of vertices and l is the number of bends in the
path [22]. The main drawback of the precomputed SPM is
the required space, because the SPM has to be found for each
city, which is impractical for hundreds or thousands of cities.
Alternatively the path can be found by a construction of the
SPM that can also be used for the two points (node–node) path,
e.g. in O(NW logNW) [17], or in O(logNW) using O(N11

W )
space [7]. Even though the SPM provides exact shortest
path, a simpler and computationally feasible approximation
of the shortest path between two points in W seems to be
sufficient for the SOM adaptation procedure [13]. The main
idea of the approximation is based on precomputed shortest
paths between map vertices and a supporting convex polygon
partition. The all shortest paths can be found in O(N3

W) and
a convex partition can be found in O(NW logNW) [29] with
the required space O(N2

W). A convex polygon partition P is
a set of convex polygons Ci, P = {C1, C2, . . . , Cl}. A path
between two points is found as follows.

Let two points p1 and p2 be inside particular cells C1 and
C2. A path between the points is constructed from the shortest
path between vertices of each cells S(v1, v2), where v1 ∈ C1

and v2 ∈ C2. Vertices v1, v2 are selected to minimize the path
length: |p1, v1|+ |S(v1, v2)|+ |v2, p2|, where |., .| denotes the
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Euclidean distance of two points and |S(., .)| is a length of
the shortest path between two vertices. An example of the
path over cell vertices v1 and v2 is shown in Fig. 2a. A path
is a sequence of vertices (v1, . . . , v2) and can be refined by a
direct visibility test between the points and particular vertex
vi of the path, see Fig. 2b. The visibility test is similar to the
method described in [18], instead of a triangulation the convex
partition is used. The path approximation can be improved
by an additional visibility test of vertices of obstacle edges
that intersect the segment (p1, p2), see blue line segments in
Fig. 2c. If such vertices are directly visible from the point p1
or p2, an alternative shorter path may be constructed.

(a) (b)

an alternative shortest path
for direct visibility test
additional vertices

between visible vertices

(c)

Fig. 2: Approximate paths between two points: (a) a rough
path; (b) a refined path; (c) an alternative refined path.

Determination of the cell is the point–location problem,
which can be solved in O(logNW ) or in the average complex-
ity O(1) by the “bucketing” technique [12]. A cell of the node
after its adaptation towards the city can be determined during
the node movement along a path to the city by a procedure
similar to the straight walk in a triangulation [11]. Such cell
determination can be bounded by O(log nd), where nd is the
number of passed diagonals of the convex partition by the path.

The complexity of the described approximation can be
worse than the complexity of the SPM construction, because
direct visibility test for each vertex is performed independently
on the previous tests. The complexity of the primal path
determination can be bounded by O(n2

c), where nc is the
maximal number of vertices of a convex cell. The refinement
procedure depends on the number of path vertices and can
be bounded by O(ndl), where nd is the number of diagonals
involved in the convex partition and l is the maximal number
of vertices of a path between two vertices. In practice, the
complexity is not so pessimistic, because nodes are moved
toward the city, which means winner nodes and particular
cities become directly visible during the adaptation. Also a
path between two nodes is computed for two neighbouring
nodes that are typically close to each other, which means they
are both in the same cell or in the next cell.

IV. WATCHMAN ROUTE PROBLEM - WRP

The main idea of the proposed adaptation procedure for the
WRP is based on the TSP procedure presented in the previous
section, where a ring of nodes evolves in the polygonal do-
mainW . The ring evolution can be viewed as an “exploration”
of the polygonal domain W and the ring may represent a
watchman route. Covered parts of W from the route (denoted

as the ring coverage) can be computed during the adaptation
and instead of cities presented to the network in the TSP,
representative points of uncovered parts of W can be used
to attract nodes towards the uncovered parts in order to find
a route from which whole W will be covered. An important
aspect of the uncovered parts should be considered: to cover
a convex part of W it is sufficient if the route just enters into
the part. From this perspective, particular representative point
of the part is more like an attraction point towards which a
node is moved, thus these points are called attraction points.
To support the idea of the proposed adaptation it is necessary
to address three sub-problems:

1) determination of the current ring coverage and uncovered
parts of W ,

2) determination of attraction points of the uncovered parts,
3) adaptation of nodes to attraction points.

Proposed solutions of these sub-problems are based on a
convex cover set ofW and a triangular mesh ofW . The WRP
is considered as a problem to find a route that is incident with
a subset of convex polygons from the cover set such that the
union of these polygons covers W . Convex polygons of the
cover set are restricted to respect the d-visibility, i.e. a distance
of two points of a convex polygon is less than d. Examples of
a convex partition and convex cover sets are shown in Fig. 3.

(a) partition (b) cover set (c) cover set, d=1 m

Fig. 3: A convex polygon partition and cover sets; (c) cover
set according to restricted visibility range d. Polygons of cover
sets are visualized in a semitransparent light (yellow), thus
overlapping parts of the polygons are darker (stronger yellow).

A triangular mesh is used to find a cover set, despite any
cover set can be possibly used. The mesh is advantageous,
because it can be used to support determination of the ring
coverage. Moreover, a centroid of each triangle can be used
as an attraction point. The mesh generator [31] provides a
triangular mesh with the specified maximal triangle area and
minimal triangle angle. Appropriate parameters of the mesh
have to be selected according to visibility range d. More
triangles provide better results, but they also increase the
computational burden. An important aspect of the mesh is its
quality, triangles should be equilateral (close to be equilateral)
or the Delaunay property must be satisfied, otherwise issues
with degenerative cases can be expected [11].

A convex cover P is a set of convex polygons P =
{P1, . . . , PNC

}, where each convex polygon Pi contains a
subset of triangles of the supporting triangular mesh T =
(V ,E,T ). These triangles are used to determine the current
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ring coverage. An algorithm to find a cover set is described in
the next section followed by a procedure of the ring coverage
determination, Section IV-B. The adaptation procedure for the
WRP with d-visibility is presented in Section IV-C.

A. Finding a Cover Set

A convex polygon P of a cover set is found as a convex
hull of mesh triangles’ vertices. Each polygon P is formed
from the mesh vertices V P , V P ⊆ V and has associated set
of mesh triangles T P , T P ⊆ T that are entirely inside P ,
T ∈ T P , T ⊆ P . The procedure to find a convex polygon
P is depicted in Algorithm 1, where V (T ) represents the
mesh vertices of the triangle T and E(T ) are edges of T .
A construction of the convex hull is initiated from a (possibly

Algorithm 1: Find Convex Polygon
Input: T = (V ,E,T ) – a triangular mesh of W
Input: d – a visibility range
Input: Tr – an initial triangle, Tr ∈ T
Output: P (V P ,T P ) – a convex polygon
V P ← V (Tr), T P ← {Tr}
Eopen ← {e|e ∈ Tr}, Eclose ← ∅
while |Eopen| > 0 do

e? ← random(Eopen) // random edge

T ? ← T incident with e? ∧ e? ∈ E(T ) ∧ T /∈ T P

v? ← v such that v /∈ V P ∧ v ∈ T ?

Ch ← convex hull(V P , v
?, d)

if T ? is entirely inside Ch then
V P ← Ch, T P ← T P ∪ {T ?}
Eopen ← Eopen ∪ {e|e ∈ E(T ?) ∧ e /∈ Eclose}

else
Eclose ← Eclose ∪ {e|e ∈ E(T ?)}

Eopen ← Eopen \ {e?},Eclose ← Eclose ∪ {e?}

random) triangle Tr, which forms an initial convex hull. The
hull is extended by mesh vertices that are opposite to edges of
the triangle (the set Eopen). Each particular mesh vertex can
extend the hull by one triangle. The triangle is associated to the
polygon and the convex hull is modified according to the newly
added mesh vertex. The procedure is repeated until the list of
candidate edges Eopen is empty. During the hull extension
(convex hull), dimensions of the hull are considered and a
mesh vertex being added is eventually discarded. An example
of the algorithm performance is shown in Fig. 4.

The algorithm to find a convex polygon is used to find
a complete cover set. The set is found by a randomized
incremental procedure that selects a random uncovered triangle
of the used triangular mesh and extends it to a convex polygon.
The procedure is depicted in Algorithm 2.

B. Determination of the Ring Coverage

The ring coverage is computed as approximation of the con-
tinuous sensing along the ring that is based on the computation
of coverage of W along a straight line segment s of two
directly visible points. The coverage is found as the union of

(a) (b) (c)

Fig. 4: An example of convex polygon determination: (a) a
mesh vertex being added to the hull, (b) an extented polygon,
(c) the final convex polygon and associated triangles that are
entirely inside the polygon.

Algorithm 2: Find Convex Cover Set
Input: T = (V ,E,T ) – a triangular mesh of W
Input: d – a visibility range
Output: P = {P1, . . . , PNC

} – a set of convex polygons
U ← T // uncovered triangles

while |U | > 0 do
T ← select random triangle from U
P (V P ,T P )← find convex polygon(T , d, T )
P ← P ∪ P , U ← U \ T P

all triangles associated to all incident convex polygons of the
cover set with the ring. Each triangle is in at least one convex
polygon, therefore for each triangle a set of convex polygons
(which have associated the triangle) is associated. All incident
convex polygons with s are determined from incident triangles,
which are found by a visibility walk in the triangular mesh.
An example of the segment coverage is shown in Fig. 5. The

(a) incident triangles (b) d = 50 m (c) d = 4 m

Fig. 5: An example of approximation of the continuous sensing
along a line segment, triangular mesh with 2 266 triangles: (b)
and (c) incident convex polygons for a visibility range d.

ring coverage is determined in three steps.
1) A sequence of points (p1, p2, . . . , pn, pn+1), where p1 =

pn+1 for the closed ring, representing the ring is found
by the approximation of the shortest path between each
neighbouring nodes of the ring.

2) For each segment of neighbouring points si = (pi, pi+1)
incident triangles are determined by the visibility walk
in the triangular mesh. A set Tr is the union of all such
incident triangles.

3) The ring coverage is a set of triangles Tc determined
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from the convex polygons. For each Ti ∈ Tr all associ-
ated convex polygons Pi = {Pi,1, . . . Pi,n} are used to
find the set Tc, Tc =

⋃
Ti∈Tr

⋃
Pi,j∈Pi

{T |T ∈ Pi,j}.
In the worst case all triangles can be intersected by a ring

and each convex polygon can have associated all triangles,
therefore the complexity of the ring coverage procedure can
be bounded by O(N2

T ).

C. Adaptation Procedure for the WRP with d-visibility

The adaptation procedure is based on a triangular mesh and
a cover set constructed on top of the mesh. The centroids of
the mesh triangles are used as attraction points in similar way
like cities in the TSP algorithm. The problem is to find a route
to “see” all triangles, therefore it is not necessary to visit all
triangles. The adaptation rule is modified to do not place nodes
unnecessary close to the attraction point pa. An alternate point
is determined and used instead of pa, if the node would be
closer to pa than the visibility distance d after the adaptation.
The proposed adaptation procedure is depicted in Algorithm 3.

Algorithm 3: WRP Adaptation Procedure
Input: T = (V ,E,T ) – a triangular mesh of W
Input: P – a set of convex polygons associated to T
Input: (G,µ, α) - parameters of SOM
Output: (ν1, . . . , νm) - nodes representing a route
r ← initialization // create a ring of nodes

repeat
I ← ∅ // a set of inhibited nodes

Tc ← triangles covered by the current ring r
Π(T )← create a random permutation of triangles
foreach T ∈ Π(T ) do

if T /∈ Tc then
pa ← centroid(T ) // attraction point

ν? ← select winner node to pa, ν? /∈ I
P c ← {all associated convex polygons to T}
if ν? /∈ P, P ∈ P c then

adapt(ν?, pa)

T c ← T c ∪ {T |T ∈ P, P ∈ P c}
I ← I ∪ {ν?} // inhibit winner node

adaptation to triangles
G← (1− α) ·G // decrease the gain

until all triangles are covered by the current ring

The algorithm is pretty much similar to the TSP algo-
rithm described in Section III-B. The main difference is in
consideration of the coverage and the number of neurons,
which is derived from the number of triangles. All other
SOM parameters (like G, f, µ, α) are the same. The current
ring coverage is represented by a set of triangles T c. At
the beginning of each adaptation step the ring coverage is
determined. After that, triangles are presented to the network
in a random order and nodes are adapted only to uncovered
triangles. A winner node is selected according to its distance
to the centroid pa of the presented triangle T . The distance
is found as a length of the approximate shortest path from

the node to pa. After the selection, triangles of all associated
convex polygons P c to T are added to T c, which means that
the ring is not adapted to these triangles for the rest of the
current adaptation step. Also the adaptation is performed only
if the winner node is not in some polygon of P c. A node can
be in such a polygon due to its movement during adaptation
to another triangle.

To avoid placement of nodes unnecessary close to the
attraction point pa, the adaptation rule adapt is modified to
find an alternate point for the adaptation. Assume a winner
node ν is being adapted to the centroid pa of the triangle
T and T is associated with a set of convex polygons P c.
Approximation of the shortest path from ν to pa can be formed
from the map vertices and can be represented as a sequence of
points (p1, . . . , pk), where p1 = ν and pk = pa. The alternate
point is found as the farthest (from pa) intersection point of
the segment (pk−1, pk) with P ∈ P c, see Fig. 6.

(a) (b) (c)

Fig. 6: An example of alternate points for a different node and
the same attraction point, the attraction point is the centroid
of the small triangle inside associated convex polygons, line
segments represent approximation of the shortest path.

An example of the algorithm performance is shown in Fig. 7.
In last thirty steps, a shape of the ring is almost same and
winner nodes are moved towards uncovered parts ofW , while
the ring coverage is preserved.

The complexity of the algorithm depends on the used
supporting geometrical procedures that depend on sizes of the
map (NW ), triangular mesh (NT ) and convex cover set (NC).
The procedures are called during the adaptation, therefore
the complexity of one adaptation step is always related to
the number of neurons m. The complexity of the winner
selection phase can be bounded by O(mNTTd), where Td

is the complexity of the node–point distance query. The
adaptation can be bounded by O(lNT (Ta + Tm)), where l
is the number of adapted neighbouring nodes (derived from
m), Ta is the complexity of the determination of an alternate
point, and Tm is the complexity of a node movement towards
the attraction (alternate) point along a path. The path is found
during the winner selection. The number of neurons is derived
from the number of triangles NT . Thus, for the NT � NC

the complexity of the adaptation step can be bounded by
O(N2

TN
2
W ).

An important aspect of the proposed adaptation procedure
relating to the used triangular mesh should be noted. The num-
ber of triangles can be relatively high, like for the problem in
Fig. 7, whereW represents a map of real building with dimen-
sions about twenty times twenty meters. The high number of
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(a) step 8 (b) step 16 (c) step 48

(d) step 59 (e) step 67 (f) step 73

(g) step 81 (h) step 95 (i) step 111

Fig. 7: An evolution of ring during solution of the WRP,
map jh, triangular mesh with 1 417 triangles, 100 convex
polygons for the unrestricted visibility range.

triangles requires more computational time to select a winner
nodes, especially for the first adaptation steps. After several
steps, the ring covers large portion of W , thus a winner node
is determined only for several uncovered triangles. It means
that the winner selection is less computationally demanding.
Moreover, less number of neurons than in the TSP (according
to the number of cities/triangles) is sufficient, because the
network is effectively adapted to less number of attraction
points. In the experimental evaluation of the algorithm, the
number of neurons has been set in a range from 0.1NT to
0.5NT .

Despite the fact that the used SOM schema is relatively
simple, the proposed adaptation procedure becomes quite
complex, because of structures and algorithms to support path
and visibility queries. The supporting structures and algorithms
are summarized in the following list:

• a convex partition,
• a convex cover set,
• a triangular mesh,
• the visibility graph,
• all shortest paths between vertices of W ,
• a point location,
• approximation of the shortest path,
• a straight walking procedure in a convex partition.

On the other side, the advantage of these structures and algo-
rithms is their relative simplicity and computational feasibility.

The proposed algorithm addresses the WRP variant that
can be found as d-sweeper route problem in the literature.
An application of the algorithm to address the so-called d-
watchman route problem is straightforward, only triangles of
convex polygons that are connected with the border ofW have
to be considered.

V. MULTIPLE WATCHMEN ROUTE PROBLEM - MWRP

An extension of the proposed WRP algorithm to the MWRP
is analogously straightforward like the extension of the TSP
algorithm [33] to the MTSP [34], which is described in
Section III-B. The main difference is that the original MWRP
formulation does not consider a common depot, a solution
of the MWRP consists of a set of independent patrolling
routes. The flexibility of the SOM approach allows extension
to address both MWRP variants with and without the common
depot. The MinMax criterion is considered like in the MTSP,
i.e. by weighting of the node–attraction point distance to
prefer selection of a node from shorter rings. Even though,
the winner node is selected according to the attraction point it
is then adapted to the alternate point exactly like in the WRP
algorithm.

A. MWRP without Common Depot

The algorithm for the variant without the common depot
is almost identical to Algorithm 3, the only difference is
maintenance of k rings for k watchmen and determination of
ring lengths to prefer selection of nodes from shorter rings. An

(a) step 8 (b) step 31 (c) step 50

(d) step 54 (e) step 67 (f) step 96

Fig. 8: An evolution of rings in the MWRP without a common
depot, map jh, triangular mesh with 1 417 triangles, 100
convex polygons for unrestricted visibility range, lengths of
found routes are 36.9, 43.8 and 35.3 meters.

example of the algorithm performance is depicted in Fig. 8. It
is shown that in the first steps, rings are separated and after
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additional 50 adaptation steps, the rings are expanded. In the
step 67, the solution is almost found, but additional 29 steps
are necessary to achieve the complete coverage of W .

B. MWRP with Common Depot

To connect rings with the common depot a winner node
from each ring is selected and moved towards the depot at
the beginning of each adaptation step before adaptation to
uncovered triangles. The alternate point is not determined in
adaptation to the depot, because depot is a point that has to
be visited. Therefore, the adaptation procedure is terminated if
the complete coverage is achieved and the depot winners are
closer to the depot than given maximal distance. An example
of the algorithm performance is shown in Fig. 9, found routes
are of course due to the depot longer than for the MWRP
without the depot.

(a) step 30 (b) step 52 (c) step 54

(d) step 62 (e) step 65 (f) step 101

Fig. 9: An evolution of rings in the MWRP with the common
depot, map jh, triangular mesh with 1 417 triangles, 100
convex polygons for unrestricted visibility range, lengths of
found routes are 43, 62 and 58 meters.

VI. EXPERIMENTAL RESULTS

The proposed WRP adaptation procedure has been experi-
mentally verified in a set of environments represented as polyg-
onal maps1 and selected visibility ranges. Basic properties of
the maps are depicted in Table II. The first four environments
are maps of real buildings. A supporting triangular mesh is
created by the quality mesh generator triangle [31] for
the minimal triangle angle 32.5◦ and 25.0◦ for the map jh,
and given maximum triangle area. The area is experimentally
set according to the circumscribed circle of the triangle,
whose radius is derived from the restricted visibility range d.
Beside the mesh, a convex polygon partition [29] supports

1Maps with all supporting structures are available at http://purl.org/faigl/
wrp.

TABLE II: Properties of environments

Map Dimensions No. No. No. convex
[m × m] vertices holes polygons

jh 20.6 × 23.2 196 9 77
pb 133.3 × 104.8 137 3 50
ta 39.7 × 46.8 101 2 46
h2 84.9 × 49.7 1 061 34 476
dense 21.0 × 21.5 288 32 150
potholes 20.0 × 20.0 153 23 75
warehouse 40.0 × 40.0 142 24 83

determination of approximate shortest paths, the number of
convex polygons is shown in the last column of Table II.

The jh, ta and pb maps are used in comparison of the
proposed WRP algorithm with the reference algorithm. Ref-
erence solutions are found as solutions of the decoupled
approach (AGP+TSP), see Section III-A. The length of the
reference watchman route Lref is found by the Concorde
solver [3], which provides exact solution of the TSP. To
compare performance of the SOM based algorithm for the
TSP and WRP, the AGP+TSP is also solved by the SOM
algorithm for the TSP described in Section III-B using the
approximate shortest path in W . Both SOM algorithms are
randomized, therefore each problem is solved twenty times
by each algorithm and found solutions are compared by the
percent deviation to the length of the reference route of the
mean solution value, %PDM = (L−Lref )/Lref ·100%, and
as the percent deviation from the reference of the best solution
value (%PDB).

Examined algorithms have been implemented in C++ and
compiled by the G++ 4.2 compiler with -O2 optimization
flags. All experiments have been performed within the same
computation environment with the Athlon X2 5050e@2.6
GHz CPU, 2 GB RAM running FreeBSD 7.1, and only one
CPU core has been utilized by the algorithms. The presented
required computational times do not include creation of all
supporting structures. Creation of the convex cover set from
the triangular mesh takes a fraction of second for high visibility
ranges and less than two seconds for a triangular mesh
with seven thousands triangles. The triangular mesh and the
convex polygon partition are found in less than one hundred
milliseconds, and also supporting visibility graphs are found
in a fraction of second. According to the computational time
to solve the WRP or the TSP, constructions of these structures
are negligible. The most time consuming preparation step is a
computation of all shortest path between vertices, the required
time is included in the presented T . Here, it should be noted
that the TSP algorithm uses node–city path approximation that
is more efficient than the node–node query, because all shortest
path from the map vertices to the cities are precomputed. Thus,
only vertices of a single cell are examined in the node–city
path determination for the TSP.

A. Solution of the WRP with d-visibility

Detail experimental results for the WRP with d-visibility are
presented in Table III, where NC , NT and NV are properties
of the used triangular meshes, m is the number of used neurons
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TABLE III: WRP - Results

Map d Lref NC NT NV
SOM - WRP SOM - AGP+TSP

[m] [m] m %PDM %PDB T [s] m %PDM %PDB T [s]

jh inf 207.8 100 872 576 88 -50.22 -52.59 6.3 235 1.76 0.59 8.8
jh 10.0 207.3 108 872 576 88 -48.52 -52.82 6.4 238 1.45 0.27 9.1
jh 5.0 216.4 130 872 576 88 -46.94 -50.80 7.1 252 2.34 0.61 10.3
jh 4.0 219.9 169 872 576 175 -32.59 -40.12 18.1 265 1.75 0.19 11.4
jh 3.0 225.5 258 931 608 187 -26.91 -29.46 32.5 288 2.94 1.58 13.4
jh 2.0 281.9 480 1 904 1 183 381 -7.96 -10.58 132.8 438 3.31 1.89 30.3
jh 1.5 350.3 852 2 272 1 392 682 -3.66 -5.24 474.4 705 3.43 1.15 81.0
jh 1.0 470.8 1 800 3 401 1 988 1 701 4.08 2.86 3 277.1 1 380 4.28 3.24 343.8
ta inf 203.6 46 1 014 638 102 -30.90 -31.60 1.2 85 1.48 0.05 0.9
ta 10.0 202.6 70 1 014 638 102 -28.04 -28.40 1.8 88 1.79 0.05 0.9
ta 5.0 254.1 152 1 014 638 102 -15.36 -17.80 6.4 145 1.09 0.52 2.2
ta 4.0 272.2 209 1 014 638 203 -7.47 -10.00 20.9 180 1.01 0.07 3.3
ta 3.0 315.0 357 1 252 776 376 -5.68 -7.68 73.0 295 1.94 1.41 9.7
ta 2.0 408.3 757 1 944 1 151 778 0.57 -1.13 392.2 578 3.70 3.10 37.6
ta 1.5 522.1 1 320 3 117 1 788 1 247 1.21 0.23 1 232.2 1 012 4.70 3.76 124.4
ta 1.0 743.6 2 955 7 044 3 849 3 522 5.22 3.76 8 587.4 2 162 6.14 5.19 595.5

pb inf 533.3 52 2 403 1 630 241 -18.58 -20.78 6.2 112 4.00 0.04 1.4
pb 10.0 612.7 111 2 403 1 630 241 -13.03 -14.76 12.1 182 0.56 0.07 3.4
pb 5.0 682.9 262 2 403 1 630 241 -5.81 -9.02 30.3 328 0.42 0.19 11.2
pb 4.0 720.1 373 2 403 1 630 481 -6.75 -8.59 92.3 400 1.52 0.51 17.1
pb 3.0 774.8 714 3 078 2 018 616 -5.81 -6.71 244.0 588 2.34 0.47 36.9
pb 2.0 901.9 1 564 4 692 2 955 1 408 -3.16 -4.05 1 439.8 1 085 2.51 1.27 133.1
pb 1.5 1 115.9 2 787 7 144 4 319 2 858 1.03 0.34 6 181.5 2 052 3.17 2.57 511.7
pb 1.0 1 564.2∗ 6 188 14 462 8 250 5 785 2.47 1.26 34 090.1 4 522 3.93 3.48 2 544.8

∗Due to the high number of cities the solution has been found by the Chained Lin-Kernighan heuristic [4].

(a) WRP, map jh, d = inf,
L = 98.5 m

(b) WRP, map jh, d = 3 m,
L = 159.1 m

(c) WRP, map ta, d = inf,
L = 139.3 m

(d) WRP, map ta, d = 4 m,
L = 245.0 m

(e) WRP, map pb, d = 4 m, L = 658.2 m

(f) reference, map jh,
d = inf, L = 207.8 m

(g) reference, map jh,
d = 3 m, L = 225.5 m

(h) reference, map ta,
d = inf, L = 203.6 m

(i) reference, map ta,
d = 4 m, L = 272.2 m

(j) reference, map pb, d = 4 m,
L = 720.1 m

Fig. 10: Selected best solutions found by the proposed WRP algorithm and the reference solutions for a visibility distance d.

and T is the average value of the required computational time
in seconds. An overview of the solution quality a histogram
of average values is shown in Fig. 12, where 100% represents
length of the reference solution. The best solutions of selected
problems found by the proposed WRP algorithm and particular
reference solutions are shown in Fig. 10. Additional solutions
found by the WRP algorithm are depicted in Fig. 11.

The proposed WRP algorithm provides outstanding solu-

tions for unrestricted and high visibility ranges. The found
watchman routes are about tens of percents shorter than
the optimal solutions of the related TSP. Even though the
solutions are not compared with the exact solutions of the
WRP, according to the presented figures one can expect that
for high visibility ranges the found solutions are very close
to the optima. The WRP algorithm provides overall better
results than SOM solutions of the related TSP. Although the
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(a) map warehouse,
d = 10 m

(b) map potholes,
d = 10 m

(c) map pb, d = inf

(d) map h2, d = 10 m (e) map pb, d = 10 m

Fig. 11: WRP, selected solutions for various visibility range d.
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Fig. 12: Average values of the solution quality.

computational burden is higher for the WRP, it has lower
memory requires. For the largest problem pb and d=1 m, the
SOM based TSP algorithm requires hundreds of megabytes
(because of the precomputed paths) while the WRP requires
about thirty megabytes.

B. Solutions of the MWRP variants

The proposed algorithms for the MWRP have been exper-
imentally verified in a set of problems for various maps and
visibility ranges. Examples of found solutions by the proposed
algorithm for the MWRP with the common depot are shown

in Fig. 13. The performance is not explicitly compared with a
reference method, the expected performance of the algorithm
should be similar to the SOM based algorithm for the MTSP
in the polygonal domain, which is compared with the GENIUS
heuristic in [13]. An important aspect of the SOM solutions
has to be mentioned. The SOM tries to preserve the topology,
thus solutions without crossing tours are more likely found.

If the MWRP is solved without the common depot, inde-
pendent patrolling routes are found, see Fig. 14.

VII. DISCUSSION

The presented experimental results demonstrate feasibility
of the proposed SOM algorithm to address the WRP with d-
visibility in W . Although the algorithm provides better results
than the decoupled approach, the cost of the sensing have
to be taken into account. The WRP formulation assumes
only the cost of the motion, while the decoupled approach
independently minimizes the sensing cost in the AGP part and
the motion cost in the TSP part. Authors of [15] noted that
the combination of the both costs is a difficult problem that
remains largely unexplored. The presented approach can be
suitable for such combination, because winner nodes can be
considered as guards in the AGP that are selected according
to minimization of the route length. Although this idea make
sense, it needs further investigation. Nevertheless the outstand-
ing solution quality for high visibility ranges is evident from
the results.

For lower visibility ranges, the solution quality is better
than the SOM based solution of the decoupled approach,
however it is worse than the exact solution of the TSP part.
It can be caused by a poor cover set created from the used
triangular mesh or because of the high number of triangles
makes the problem very close to the TSP in which SOM
provides solutions about units of percents worse than the exact
solutions [9]. On the other side, it should be mentioned, that
for small d, the d-sweeper route problem is very close to
the coverage task by a mobile robot, which is addressed by
algorithms based on a cell decomposition and explicit routing
shapes in the cells [1]. These algorithms provide more suitable
solutions for a real robot than approximate (or exact) solutions
of the related TSP.

Performance of the MWRP algorithm according to the
number of used neurons has been studied during the experi-
mental verification. A following issue has been observed for a
relatively small number of neurons. In early adaptation steps,
when coverage of the ring is small, the winner nodes have
been selected from a longer ring, because all nodes from
shorter rings have been inhibited. This issue can be avoided
by a creation/deletion of neurons during the adaptation like in
one of the first SOM approach for the TSP [2]. However, the
deletion has to be carefully considered, because nodes are part
of the ring that cover W and the deletion can change the ring
coverage.

Beside the creation/deletion of nodes, the proposed algo-
rithm can be improved in two aspects. At first, more so-
phisticated adaptation rules can be used to avoid unnecessary
computations of shortest paths, e.g. the local search strategy
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(a) map potholes,
d = 2 m, k = 3

(b) map potholes,
d = 2 m, k = 4

(c) map potholes,
d = 2 m, k = 5

(d) map dense,
d = 4 m, k = 2

(e) map dense,
d = 4 m, k = 3

(f) map dense, d = 4 m,
k = 5

(g) map warehouse,
d = 4 m, k = 2

(h) map warehouse,
d = 4 m, k = 4

(i) map warehouse,
d = 4 m, k = 3

(j) map jh, d = 2 m,
k = 3

(k) map jh, d = 2 m,
k = 5

(l) map jh, d = 2 m,
k = 4

(m) map ta,
d = 2 m, k = 3

(n) map ta, d = 2 m,
k = 4

(o) map ta, d = 2 m,
k = 5

(p) map pb, d = 4 m, k = 3 (q) map pb, d = 4 m, k = 4

Fig. 13: Selected solutions of the MWRP with the common depot for the d-visibility and k watchmen.

(a) map potholes,
d = 2 m, k = 2

(b) map potholes,
d = 2 m, k = 4

(c) map potholes,
d = 2 m, k = 5

(d) map dense,
d = 4 m, k = 2

(e) map dense,
d = 4 m, k = 4

(f) map dense, d = 4 m,
k = 5

(g) map jh, d = 2 m,
k = 3

(h) map jh, d = 2 m,
k = 4

(i) map jh, d = 2 m,
k = 5

(j) map h2, d = 5 m, k = 4 (k) map h2, d = 5 m, k = 5

(l) map h2, d = 5 m, k = 5 (m) map ta,
d = 2 m, k = 2

(n) map ta, d = 2 m,
k = 4

(o) map pb, d = 4 m, k = 5 (p) map pb, d = 4 m, k = 3

Fig. 14: Selected solutions of the MWRP without the depot for the d-visibility and k watchmen.
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to select a winner node proposed in the Co-Adaptive net
algorithm [9]. The second aspect is relating to the used
supporting geometrical structures, mainly with the properties
of the underlying triangular mesh that have to be set appropri-
ately. A mesh created as a topology representing network [21]
may be helpful.

VIII. CONCLUSION

A new SOM based adaptation procedure has been proposed
to address the MWRP with d-visibility in the polygonal
domain W . The proposed procedure has been experimentally
verified in several environments and compared with the de-
coupled approach. Direct approach to address the MWRP with
d-visibility in W by the SOM adaptation has not been found
in the literature, thus the proposed algorithm is probably the
first approximate algorithm for this type of problems.

The proposed approach combines the self-organizing princi-
ples and supporting geometrical structures to address problems
studied in the computational geometry. Four main issues are
addressed by the structures: selection/determination of the
attraction points, determination of a path in order to select
a winner node, a node movement towards the attraction point,
and computation of the watchman route coverage.

Regarding to the experimental results it seems that SOM
features fit aspects of the so-called hybrid–visibility problems.
The proposed algorithm demonstrates applicability of the SOM
principles in these problems, thus the principles may be
probably applied to other similar problems from the NP class
like vision points, touring polygons or safari route problem.
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