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Autonomous Data Collection using a
Self-Organizing Map

Jan Faigl, Member, IEEE, Geoffrey A. Hollinger, Member, IEEE

Abstract—The self-organizing map is an unsupervised learning
technique providing a transformation of a high dimensional input
space into a lower dimensional output space. In this paper,
we utilize the self-organizing map for the traveling salesman
problem to develop a solution to autonomous data collection.
Autonomous data collection requires gathering data from pre-
deployed sensors by moving within a limited communication
radius. We propose a new growing self-organizing map that
adapts the number of neurons during learning, which also allows
our approach to apply in cases where some sensors can be ignored
due to a lower priority. Based on a comparison with available
combinatorial heuristic algorithms for relevant variants of the
traveling salesman problem, the proposed approach demonstrates
improved results, while also being less computationally demand-
ing. Moreover, the proposed learning procedure can be extended
to cases where particular sensors have varying communication
radii, and it can also be extended to multi-vehicle planning.

I. INTRODUCTION

The problem addressed in this paper is motivated by en-
vironmental monitoring and surveillance scenarios, where an
autonomous vehicle is required to collect data from pre-
deployed sensors. Examples include autonomous underwa-
ter vehicles assisting oceanographers to track harmful algae
blooms [1], aerial vehicles collecting data about changing
ecosystems [2], and ground vehicles monitoring volcanic activ-
ity [3]. In particular, the proposed approach aims to provide an
efficient solution to autonomous data collection from sensors
placed on an ocean floor [4]. A convenient method for data
collection is to equip each sensor with wireless communication
capability and retrieve data remotely. However, due to limited
communication technology available in the underwater domain
(e.g., wireless acoustic modems), a mobile underwater vehicle
is needed to retrieve the data from deployed sensors [5].

Such an autonomous data collection mission to visit a
set of pre-specified locations can be formulated as a variant
of the traveling salesman problem (TSP). The TSP stands
to determine a shortest tour visiting all the given locations
(cities), such that each location is visited exactly once and the
tour returns to the origin location. The TSP is a well studied
problem in operations research and is known to be NP-hard
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(unless P=NP). Although efficient combinatorial heuristics [6]
and probabilistic approaches [7] have been proposed for the
TSP, the considered autonomous data collection problem is
different from the standard TSP in two important aspects. First,
it is not necessary to visit the sensors exactly. It is sufficient
if the vehicle reaches the vicinity of each sensor to allow for
a reliable transmission of the data from it. The second aspect
is related to a lower priority of some sensors providing less
important data. It may be better to ignore these sensors, rather
than unnecessarily increasing the solution cost to visit them.
Regarding existing variants of the TSP in literature, these two
aspects of the studied data collection problem have appeared
as TSP formulations called the traveling salesman problem
with neighborhoods (TSPN) and the prize-collecting traveling
salesman problem (PC-TSP) [8], respectively.

The PC-TSP and TSPN have been studied in the litera-
ture, and most prior approaches are based on combinatorial
optimization techniques (including our own prior work [5],
[9]). Existing frameworks are based on a combination of
heuristics, used to determine which locations to visit, followed
by a solution of the standard TSP with point cities. Specific
algorithms have been proposed for particular problem variants,
but the combinatorial heuristics do not address the entire
spectrum of these optimization problems (TSP, TSPN, PC-
TSP, and a combination of PC-TSPN) in a single unified way.

An alternative to the combinatorial optimization approach
is to use a self-organizing map (SOM) to solve the TSP [10].
The SOM is able to solve problems where the locations to
be visited are not explicitly prescribed (e.g., in the watchman
route problem (WRP) [11]). A basic variant of the WRP is
to find a shortest path for a mobile watchman to cover a
whole environment using a sensor with limited sensing range.
Solving this problem requires determining sensing locations to
cover the environment and finding a shortest path connecting
these locations. The main benefit of SOM-based approaches
is an ability to address both sub-problems together and solve
them simultaneously using unsupervised learning. New sens-
ing locations are iteratively determined during the learning
from the current route represented by the network.

The idea of SOM for the WRP has been applied to a robotic
variant of the TSPN in [12], where the problem is to find a
shortest path connecting a set of polygonal goals. These recent
advancements of the SOM-based route planning motivate us to
consider SOM-based unsupervised learning as a unifying tech-
nique to solve the entire class of the aforementioned problem
formulations arising from autonomous data collection. Thus,
we can bridge the gap between combinatorial heuristics that
address only particular problem variants.
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The main novelty of this paper is a new adaptation proce-
dure of SOM that provides a unified architecture for solving
variants of the TSP. To the best of our knowledge, the proposed
solution is the first application of SOM to the TSP with
both neighborhoods and prizes on the cities. Based on the
presented results, the proposed SOM-based approach provides
improved solutions in comparison with combinatorial heuris-
tics in scenarios motivated by underwater data collection mis-
sions. Moreover, the SOM approach is less computationally
demanding than approaches based on combinatorial solutions
to the underlying TSP. The presented work is based on our
early results reported in a prior conference paper [13], where
we introduced the idea of considering SOM for the TSPN in
data collection missions.

In the current paper, we present an improved adaptation
procedure along with a detailed description of the identified
parameters providing a trade-off between the solution quality
and computational requirements. The particular improvements
and extensions over our preliminary results are as follows:
• Improved ring regeneration technique to provide a better

quality of solutions.
• Initial values of the unsupervised learning technique and

their evolution during adaptation to decrease the compu-
tational time while maintaining the solution quality.

• More elaborate evaluation and comparison of the pro-
posed technique versus existing solutions.

• Extension of the adaptation procedure to consider varying
communication radii for individual sensor stations.

• Extension of the unsupervised learning to multi-vehicle
missions and initial evaluation of found solutions.

The paper is organized as follows. A discussion of related
work in autonomous data collection is presented in Section II
to show the need for a unified architecture. Then, an overview
of SOM-based routing techniques is presented. The problem
statement and considered problem formulation are presented in
Section III together with the used notation. In Section IV, the
proposed SOM-based planner is presented. A generalization of
the proposed planner to problems with varying communication
radii for each sensor location and extensions to multi-vehicle
missions with and without a common starting location (depot)
are demonstrated in Section V. Results of a comparison with
state-of-the-art combinatorial heuristic methods are presented
in Section VI together with a discussion of found insights.
Concluding remarks are presented in Section VII.

II. RELATED WORK

In an autonomous data collection mission, a mobile vehicle
is requested to collect data from a set of pre-deployed sensors.
Hence, this mission planning problem is closely related to
the TSP. In this case, wireless communication can be used
to retrieve data from sensors, and the vehicle may not need
to visit the location of the sensor exactly. Instead, it may
be sufficient to move within a communication radius of the
sensor. Moreover, it may be sufficient to move within proxim-
ity of a particular location (e.g., in view planning, coverage,
or surveillance missions [14]) to collect the requested data.
Finally, it can be difficult to achieve precise navigation to an

exact point location with an autonomous mobile robot. Having
multiple options to visit a goal may provide a solution with
increased reliability [15]. Therefore, the TSP with neighbor-
hoods (TSPN) is an important problem formulation used for
planning efficient paths to visit a set of regions by a robot.

Even though approximate solutions of the restricted variants
of the TSPN exist (e.g., a problem with arbitrary connected
neighborhoods with similar diameters and disjoint unit disc
neighborhoods [16] or disjoint convex fat neighborhoods [17]),
in general, the TSPN is APX-hard [18] and cannot be approx-
imated to within a factor 2− ε, where ε > 0.

Another aspect of the autonomous data collection related
to a practical deployment is the case where sensors provide
information of different quality. This can be modeled by an
association of different “prizes” (or corresponding penalty if
the sensor is ignored), which leads to the Prize-Collecting
TSP (PC-TSP) originally introduced by Balas in [19]. The
original PC-TSP has been further extended to a number of
related variants [20], which include variants of the type of
required path, restrictions on the prizes, and the appearance
of new locations during the tour [21].

An approximation algorithm for the PC-TSP has been
proposed in [22]. The algorithm is based on an LP primal/dual
scheme, which is guaranteed to provide a solution within an
approximation factor of two. In [23], authors show a slightly
better approximation guarantee is possible; however, at the
cost of computational and implementation complexity.

The problem of planning a route for data collection missions
has been studied in robotics in the context of robotic data
mules. Approximation algorithms for multiple data mules
collecting data from a sensor field have been proposed in [24].
In this problem, the time for communication with the sensor is
considered as part of the tour. In addition, the communication
radii around sensors are assumed to be uniform, fixed, and
deterministic. Mobile and stationary nodes for data collection
in underwater missions based on optical and acoustic commu-
nication has been presented in [25] together with description of
the networking architecture and sensor specifications necessary
for this type of missions.

Regarding our own prior work on robotic data collection,
we proposed a combination of the PC-TSP and TSPN as a
suitable problem formulation for autonomous data collection
planning and a heuristic solution to this problem [5], [9].
The combinatorial solution is based on a decoupled approach,
where sensing locations are determined prior finding a route
as a solution of the TSP. A covering set of goals is generated
according to the size of the neighborhoods, and the goals to
be visited are found as a subset of the covering set by the
approximation algorithm [22]. Finally, the TSP tour of this
subset is found by the Concorde solver [6], [26]. In [5], we
showed that this heuristic approach outperforms competing
algorithms in autonomous data collection scenarios. However,
the key drawbacks of this prior work are the need to use the
TSP solver for the underlying routing problem and the heuris-
tic nature of the subgoal selection. In the present paper, we
propose using the unsupervised learning architecture of a self-
organizing map (SOM) to eliminate these drawbacks, improve
solution quality, and decrease the required computation time.
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A. Self-Organizing Map for Route Planning
The self-organizing map (SOM) was originally proposed as

a data visualization technique by T. Kohonen to provide a non-
linear transformation (map) of a high-dimensional input space
into a lower dimensional (usually 2D) discrete output space
of cell lattices [27]. SOM is a two-layered artificial neural
network accompanied by an adaptation procedure of the un-
supervised learning that adapts neuron weights to represent the
input space. The procedure is based on an iterative selection of
the best matching neuron to the presented input signal and its
adaptation, together with its neighboring neurons, according
to the used neighbouring activation function. The adaptation
provides the main feature of SOM, a preservation of topolog-
ical properties of the input space in the output space. Based
on this principle, SOM was successfully applied in many
applications of clustering, classification, and data visualization
problems [27]. In 1988, SOM was applied to solve NP-hard
routing problems, in particular the TSP, independently by
Angéniol [28] and Fort [29]. Since then, several approaches
have been proposed to improve SOM performance in the
TSP over the last decades (e.g., see overviews of approaches
in [30], [31], [32], [33], [34]).

SOM for the TSP [10] is also a two layered network, but
the output layer is one dimensional and forms an array of
neuron weights, which is called a ring. The basic adaptation
works as follows: 1. The input is a two dimensional vector for
presenting 2D points that represent cities in the planar TSP; 2.
The neuron weights also represent 2D points that are adapted
to fit the input cities; 3. The unsupervised learning consists
of iterative presentation of the cities to the network; 4. The
algorithm selects the best matching neuron for each presented
city and then adapts the winner and its neighbouring neurons
to the city; 5. The adaptation is terminated when winners fit the
cities (i.e., are negligibly close to them); 6. Then, the sequence
of cities to be visited is retrieved by traversing the output layer
(ring). Hence, the TSP tour can be obtained by connecting the
cities (in the input space) associated to the winners.

III. PROBLEM STATEMENT

The studied problem of autonomous data collection is for-
mulated as a variant of the traveling salesman problem (TSP),
where data to be collected are retrieved from a pre-deployed
set of n sensors. Two practical aspects of data collecting
are considered in the proposed problem formulation. First,
we consider importance of data following the prize-collecting
traveling salesman problem (PC-TSP) formulation [8], where
each city represents a prize that might be collected and each
prize has associated penalty cost if it is not collected. This
formulation leads to cases where the penalty is significantly
lower than the travel cost to the sensor, which makes it more
suitable to avoid visitation of the sensor by the tour. Hence,
the problem is to find a cost-efficient tour collecting the most
important prizes (sensor measurements). The optimal tour will
have minimal total cost, computed as the sum of the tour length
(cost), in addition to the sum of the penalties of all sensor
measurements not collected along the tour.

The second aspect is related to the fact that data from the
sensor can be retrieved using wireless communication, which

can be considered reliable up to a specific communication ra-
dius ρ (e.g., based on the used technology and local conditions
around each sensor station). Therefore, it is not necessary to
visit the sensor exactly (only within the radius ρ from it). This
aspect is formalized by the traveling salesman problem with
neighborhoods (TSPN). In the case where data from all the
sensors have to be collected and communication is reliable
only for a very close distance to a sensor (i.e., ρ = 0), the
problem becomes the standard TSP with point cities.

These two aspects are combined in a problem formulation
called the prize-collecting traveling salesman problem with
neighborhoods (PC-TSPN), which is a suitable problem for-
mulation of the studied autonomous data collection planning.
Thus, the problem is to find a cost efficient path to retrieve
data from the given set of n sensor stations (not necessarily
from all sensors). We formalize the problem as follows.

For simplicity, it is assumed the sensor stations are located
in R2 with the positions S = {s1, . . . , sn}, si ∈ R2. Each
sensor si has associated penalty ζ(si) ≥ 0 characterizing the
additional cost if the data are not retrieved from si. A vehicle
for collecting data from the sensors is operating in R2 with the
traversal cost c(p1, p2) defined for any two points p1, p2 ∈ R2.
Data from a sensor station si can be retrieved by the vehicle
located within ρ distance from si. Having these preliminaries,
the PC-TSPN stands to find a set of unique goal locations
G = {g1, . . . , gk}, k ≤ n, gi ∈ R2, and gi 6= gj for all
gj , gi ∈ G, at which the sensor data readings are performed
and to determine a cost efficient tour T to visit the locations
G such that the total cost of the tour C(T ) is minimal:

C(T ) =
∑

(gli ,gli+1
)∈T

c(gli , gli+1
) +

∑
s∈S\ST

ζ(s), (1)

where ST is the determined subset of the sensors ST ⊆ S
from which data are collected at the goal locations G, i.e.,
for each selected sensor s ∈ ST there exists g ∈ G such that
|(s, g)| ≤ ρ. The tour T is a permutation of the determined
goal locations T = (gl1 , . . . , glk−1

, glk), where glj ∈ G, 1 ≤
lj ≤ n, and gl1 = glk . Notice, for a set of goal locations G,
the optimal tour T can be found as a solution of the TSP, e.g.,
using the Concorde solver [26]. However, the proposed SOM-
based approach aims to determine G and T simultaneously
during the unsupervised learning.

Regarding the motivational data collection scenario, the en-
vironment can be considered as planar and without obstacles.
Therefore, to simplify description of the proposed approach,
we consider the travel cost between two goals c(gi, gj) as the
Euclidean distance |(gi, gj)|.

Used notation and symbols are depicted in Table I, where
the values of the particular parameters are recommended
values used to obtain the results presented in Section VI.

A. Terminology Note

In the original formulation of the TSP, the location to
be visited by the tour are called cities. In robotics, such a
planning problem to visit a set of locations (cities) is called
multi-goal path planning, where the goals represent particular
navigational waypoints towards which the robot navigates
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TABLE I
USED SYMBOLS

Symbol Description
R2 Problem domain – 2D plane
ρ Communication radius for reliable data transmission
S Set of sensor stations (positions)
si Position of sensor station si ∈ S
n Number of sensor stations, n = |S|
G Set of goal locations (positions) from which data are

retrieved from the sensors
gj Position of the goal location gj ∈ G
k Number of the determined goal locations, k = |G|
ζ(si) Penalty cost for not retrieving data from the sensor si
T Solution of the PC-TSPN – a sequence of goal visits (tour)
µ Learning rate, µ = 0.99
µt Learning rate threshold to terminate the adaptation, µt=0.4
c(pi, pj) Euclidean distance between points pi, pj ∈ R2

ν Neuron weights, ν ∈ R2

m Current number of neurons in a ring
σ Neighbouring function variance (learning gain)
σ0 Initial value of neighbouring function variance, σ0=10
α Decreasing rate of neighbouring function variance, α=0.01
Π(S) Random permutation of sensor stations
f(σ, d) Neighbouring function, where d is a distance of the neuron

being adapted from the winner in the output layer (i.e.,
distance in the number of neurons)

C(T ) Cost of the solution (tour) T

during a mission execution. The problem addressed in this
paper is to determine a cost efficient solution for collecting
data from the given sensors, and thus we can consider sensors
as the cities in the TSP. However, we are allowed to read data
within a communication radius ρ, and we can imagine that data
from a sensor si can be read from any location inside a disk
with the radius ρ centered at si. Hence, the sensor, together
with the communication radius, represent a goal region to be
visited by a vehicle (similar to [35], [12]). In the addressed PC-
TSPN, the problem is to determine the particular goal locations
at which data from the selected sensors can be retrieved and
the sequence of the goal locations.

IV. SOM-BASED PLANNER FOR THE PC-TSPN
The proposed approach for the PC-TSPN follows the basic

structure of the SOM for the TSP [10] accompanied by
ideas for the TSPN [12] and PC-TSP [36]. We extend prior
adaptation schema by providing a new way of determining a
winner neuron and proposing an additional rule for considering
the prize-collecting penalty associated to each sensor measure-
ment. The penalty is addressed by a conditional adaptation
of the winner neuron to a suitable goal location from which
data can be read from the sensor if the distance (cost) of
such a winner neuron to that location would be lower than
the associated penalty of the sensor [36]. Therefore, prior
to an actual winner selection and its adaptation, we need to
determine the location of such a winner and the corresponding
goal location to retrieve data from the sensor.

Due to the increased complexity of the conditional adap-
tation in comparison to a standard SOM, we first provide
an overview of the used SOM for the TSP followed by
the proposed learning parameters and their evaluation during
the learning in Section IV-B. A detailed description of the
proposed SOM for the PC-TSPN is presented in Section IV-C.

ring of neurons

j,x

sj,y

Output layerInput layer

coordinates of

the sensor station
weights of neurons

are coordinates

in the plane

s

Fig. 1. Structure of the SOM for the TSP.

Comments on the computational complexity and solution
quality are in Section IV-D and Section IV-E, respectively.

A. Overview of the used SOM for the TSP

The used neural network for the TSP is a two-layered
network with one-dimensional output (see Fig. 1). The first
layer consists of two inputs for presenting coordinates of the
particular sensor in a plane, sj ∈ R2. The neuron weights are
also two dimensional coordinates in R2 that are adapted to
particular sensor locations sj ∈ S during the network learning.
The output layer is organized into an array of output units.
By connecting the sequence of the neuron weights by straight
line segments, the output layer forms a ring of neurons that
represents the requested data collection tour in the input space.

The learning of SOM for the TSP is an iterative process
to adapt the network to the sensor locations (cities). The
sensors are presented to the network in a random order to
escape a local minima [30], [31], [10]), and for each sensor,
the best matching neuron (further referred to as the winner
neuron or just the winner) is determined according to its
distance to the sensor. Then, the winner and its neighboring
neurons are adapted towards the sensor. The adaptation of the
neighborhoods is performed with a decreasing power defined
by the neighbouring function f , which has the form f(σ, d) =
e(−d

2/σ2), where d is a distance of the adapted neighbouring
neuron from the winner in the number of neurons in the output
array. The learning is terminated after a given number of
learning epochs or when each sensor has an associated winner
at a distance less than a given threshold. Notice, in contrast
to standard SOM for classification and other problems, here,
a single learning epoch includes presentation of all sensors
(cities) to the network (as in other SOM approaches for
the TSP [31], [33]). This is beneficial because it makes the
learning epoch counter independent of the problem size.

In a standard SOM [27], the number of neurons must be
selected prior to learning, e.g., usually as 2–3 times the number
of sensors (cities) for the TSP [33]. On the contrary, sensors
are selected during the learning in the PC-TSPN. Therefore, it
is desirable to adapt the number of neurons during the learning,
which is a part of the proposed adaptation procedure.

B. Learning Parameters

The performance of the SOM adaptation depends on ini-
tialization of the network and the evolution of the learning
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parameters. This includes initialization of the neighbouring
function variance σ, its decreasing rate α, learning rate µ,
and their evolution schemata. Instead of initialization of the
σ according to the number of cities [30] (e.g., used in our
previous work [10], [11]), we follow the evolution schema
proposed in [37] and set initial values of the parameters to
σ = 10 and µ = 0.99. These parameters are then updated
after each learning epoch as follows:

σi+1 = σi(1− iα) (2)

and

µ =
4

√
1

i
, (3)

where i is the number of the current learning epoch. Notice, µ
is independent of the number of neurons and sensor stations,
and it is decreased after each learning epoch (presentation of
all sensors). The learning rate µ is used in the adaptation,
and new neuron weights ν′ are set according to the distance
of ν to gs as ν′ = |(ν, gs)|µf(σ, d). Therefore, for a very
small µ and together with small f(σ, d), the weights are not
effectively changed after ten or more learning epochs. Thus,
we can terminate the adaptation. In fact, we have observed
the network is typically stabilized very quickly, and additional
learning epochs do not improve the solution quality. Based
on our experimental evaluation of different parameters, we
recommend α = 0.01 to provide a good trade-off between
the solution quality and the computational burden. Therefore,
we suggest terminating the adaptation when the network is
stabilized, or after 40 learning epochs.1

C. Proposed SOM for the PC-TSPN

The main idea of the proposed SOM for the PC-TSPN is
in a new winner selection based on the procedure introduced
in [38]. In this procedure, a new neuron is added to the network
at the closest point p of the current ring to the sensor s
(see Fig. 2a). However, we need to trade off the cost to read
data from s with the penalty for not collecting measurements
from s in the PC-TSPN. Therefore, expected weights of such
an eventual winner neuron (the point p) and the corresponding
location ps at which we can read data from s are determined
first. If p and ps satisfy the conditional adaptation for the PC-
TSP proposed in [36], the coordinates of p are used as the
neuron weights for the winner neuron ν∗, and ps becomes the
goal location towards which the network is adapted.

Contrary to [38] with polygonal goal regions, the point ps
is directly determined from the intersection of the straight line
segment (p, s) formed from p and s with the ρ-radius disk goal
region of s (see Fig. 2b). Thus, a possible location for reading
data from s is a point ps on (p, s) such that |(ps, s)| < ρ.

The network is adapted to s only if the distance from p to
the determined location ps is shorter than the sensor penalty,
i.e., |(p, ps)| ≤ ζ(s); otherwise both p and ps are discarded,
and the network is not adapted to s. If |(p, ps)| ≤ ζ(s) the

1If a large number of learning epochs is needed, a low value of α, e.g.,
α = 10−4, may be used. Notice, for imax learning epochs, α must be set
to α < 1/imax to keep σi+1 positive.

s
p

the sensor station

the ring of neurons

the closest point of the ring to s

presented to the network

(a)

p
s

ρ

s
p

a location at which data from

sthe sensor    can be read

(b)

the determined goal location

s

winner neuron adapted towards
g

*ν

g

s

s

(c)

s

ρ

from

sensors marked as covered

g

s
g

s

(d)

Fig. 2. Visualization of the determination of the winner neuron and goal
location: (a) winner corresponds to the closest point (in yellow) of the ring to
the presented sensor (blue disc with red outline); (b) determination of ps (red
small disc) at the ρ communication radius from the sensor s; (c) the current
ring after adaptation of the winner and its neighbouring neurons to gs, which
is created from ps; (d) sensors within the communication radius ρ from gs.
The blue discs denote sensor stations, neurons (their weights) are in green.

weights of the winner neuron for s are set to the coordinates
of p, with ps as its associated goal location gs.

The determination of the winner neuron ν∗ itself further
distinguishes three cases because we aim to adjust the number
of neurons during the learning process. Therefore, the ring
is searched for a neuron ν with the identical weights as the
coordinates of p first. If such ν is not found, a new neuron
νnew is added to the network with the weights set to the
coordinates of p and positioned between the neurons that form
the straight line segment on which p is laid (see Fig. 2a);
and νnew becomes the winner neuron. In the case ν is found,
two additional cases are considered to follow the inhibition
mechanism proposed in [30], which avoids selecting a single
neuron to be winner neuron multiple times during a single
presentation of all sensors to the network (a single learning
epoch). If ν has been already selected as a winner neuron
in the current epoch, it indicates there is a high demand to
adapt the network in the area around the presented sensor s.
Therefore, the neuron is duplicated to increase the number of
neurons, and this new neuron is set as the winner neuron ν∗.
Otherwise ν becomes the winner neuron ν∗ for s.

The winner neuron ν∗ and its neighbouring neurons are
adapted to the goal location gs, as in a standard SOM for the
TSP (see Fig. 2c), and gs becomes one of the goal locations
determined in the current epoch. Notice, data from several
sensors can potentially be read from gs. Therefore, all sensors
in the ρ-distance from gs are marked as covered for the current
epoch (see Fig. 2d), and only uncovered sensors are considered
for the network adaptation.
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During each learning epoch, all goal locations G to be
visited are determined. However, G can vary during the
learning, and therefore, the ring regeneration [38] is performed
prior the next iteration of the learning procedure. In prior
work, only winners are preserved and all other neurons are
removed [38]. Here, additional neurons are placed between
each preserved winner neurons to improve convergence of the
network as follows. A sequence of neuron weights between
two winners in the original ring forms a path. After removing
the neurons in between the winners, a new neuron is placed
at the location pc corresponding to half of this path, i.e., its
weights are set to the coordinates of the corresponding pc.

The proposed SOM with all the recommend parameters and
initialization is summarized in the following steps:

1) Initialization: For n sensor stations S = {s1, . . . , sn},
create 2n neurons around the first sensor s1.2 Set the
neighbouring function variance σ ← 10, the learning
rate µ← 0.99, and the learning epoch counter i← 1.

2) Randomizing: Create a random permutation of the sen-
sor stations Π(S)← permute(S) to avoid local minima.

3) Clear goal locations G← ∅ for the current epoch i.
4) Determine the weights of the expected winner neuron

using the closest point p of the current ring to the
presented sensor s ∈ Π(S) (Fig. 2a).

5) Determine a location ps to read data from s such that
ps lies on (p, s) and |(ps, s)| = ρ− 0.01 (see Fig. 2b).

6) Adapt: If i = 1 or |(p, ps)| ≤ ζ(s) Then

– Determine the winner neuron ν∗ from p by the
procedure described earlier in this section;

– Associate ps to ν∗ as the goal location gs;
– Extend the set of the goal locations G← G∪{gs};
– Adapt ν∗ and its neighbouring neurons νj within

the distance d (in the number of neurons) using
the neighbouring function f(σ, d) = µe(−d

2/σ2) for
d < 0.2m and f(σ, d) = 0 otherwise, where m is
the current number of neurons;

– Mark all reachable sensors from gs as covered;
Π(S)← Π(S) \ {si : |(si, gs)| ≤ ρ, si ∈ S}.

If |Π(S)| > 0 go to Step 4 (all sensors evaluated).
7) Ring regeneration: Create a new ring using only the

winners for the current epoch and add a new neuron
between each two consecutive winners with the weights
set to the point halfway along the path connecting them.

8) Update the number of the learning epoch and neigh-
bouring function variance: i ← i + 1; σ ← (1 − iα)σ;
Update the learning rate µ according to (3).

9) Termination condition: If the distance of each winner to
its associated goal location is less than 10−3 Or i > 40,
stop the adaptation. Otherwise go to Step 2.

10) Final tour construction: Traverse the ring and use the
sequence of winners in the ring to construct the final tour
from the goal locations associated with the winners.

An evolution of the proposed self-organizing network is visu-
alized in Fig. 3. An implementation of the described algorithm
for the PC-TSPN is available at [39].

2Various methods of initialization may be considered. For simplicity and
replicability we initialize the network around s1.

D. Computational Complexity

The most time-consuming operations of the proposed learn-
ing procedure are the winner neuron selection, adaptation of
neurons, and evaluation of sensors that are covered from the
determined goal locations. The complexity of these operations
depends on the number of sensor locations n for which the
network can have up to 3n neurons in a single learning epoch.
In the worst case, all neurons can be adapted and all sensors
can be evaluated. Hence, the complexity of each learning
epoch can be bounded by (3n+ 3n+ n)n.

The number of learning epochs can be restricted explicitly
since the proposed unsupervised learning provides a solution
at the end of each epoch. Moreover, the adaptation is stable
because µ and the neighboring function f are always less than
1.0 [40]. The neuron weights are effectively changed only for
a sufficiently high value of f(σ, d). Since σ depends only on
α, and it is decreasing after each epoch, the highest possible
value of f is also decreasing. Hence, the neurons weights
are stabilized in a constant number of epochs and the overall
computational complexity can be bounded by O(n2).

E. Quality of the Solutions

The proposed unsupervised learning is a stochastic pro-
cedure to map the given input space to a one dimensional
array of the determined goal locations G associated to the
units of the SOM output layer. The learning procedure does
not guarantee an optimal solution would be found in a finite
number of learning epochs; hence, the procedure is a heuristic
polynomial algorithm to address NP-hard routing problems.
On the other hand, an initial guess about the solution quality
is provided quickly since a feasible solution is available after
each epoch. To the best of the authors’ knowledge, there are
no known approximation bounds for SOM-based TSP solvers.
Therefore, an empirical evaluation is reported in Section VI.

V. EXTENSIONS TO VARYING COMMUNICATION RADIUS
AND MULTI-VEHICLE MISSIONS

A. Varying Communication Radii

A flexibility of the self-organizing procedure allows varying
communication radii for individual sensor stations (e.g., based
on the local conditions influencing radio signal propagation).
The only modification of the proposed adaptation procedure
is to consider a particular communication radius ρs associated
with each sensor station s ∈ S in the determination of the
goal location to collect data from s. A visualization of such a
problem and found solution is depicted in Fig. 4.

B. Multi-Vehicle Missions

The underlying self-organizing map for the TSP is also
flexible for addressing data-collecting problems with several
vehicles. The idea is based on the extension of the SOM
adaptation procedure for the TSP to the multiple traveling
salesman problem (MTSP) by considering an individual ring
of neurons for each salesman. The winner neuron is selected as
the closest neuron to the presented city by considering all the
rings. In the MTSP, all tours start and finish at the same (home)
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(a) Learning epoch 5 (b) Learning epoch 7 (c) Learning epoch 10

(d) Learning epoch 12 (e) Learning epoch 17 (f) Learning epoch 19

(g) Learning epoch 21 (h) Learning epoch 25 (i) Learning epoch 27 (final solution)

Fig. 3. Example of network evolution. Green connected discs represent neuron weights. Colored discs are sensors, where the more important sensors (higher
penalty cost ζ) are in red while less important sensors are in blue. In the final solution, uncovered sensors are in gray.

location (called the depot in literature). In each learning epoch,
the best matching neuron to the depot is found in each ring
and adapted to the depot prior to selecting winners to other
cities. Thus, the adaptation consists of two parts:

1) Select and adapt the winner from each ring to the depot;
2) For each not yet covered city, select a winner from all

neurons (regardless of ring), and adapt it to the city.
This extension was introduced in [41], where the authors

prefer winners from any ring that is shorter than the average

length of the rings. Therefore, the distance of the neuron ν to
the presented city is penalized by the factor 1+(lν−lavg)/lavg ,
where lν is the length of the ring to which the neuron ν
belongs, and lavg is the average length of the rings. The
preference of winners from shorter rings is motivated by the
desire to avoid expanding longer rings and thus minimizing the
length of the longest tour. This technique provides a solution
to the MTSP with a Minmax objective. If we avoid adaptation
of the winners from each ring to the depot, patrolling routes
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(a) 100 km × 100 km area (b) 200 km × 200 km area

Fig. 4. Solutions of problems with varying communication radii (particular
values are drawn from a uniform distribution): red circles denote the commu-
nication radius of each sensor station; the found path is represented by the
black straight line segments with small green disks denoting the determined
goal locations; the other small disks are the sensor stations filled by the color
corresponding to the importance of the data (high penalty data are in red
while low penalty are in blue); all sensors are covered.

can be found, which has been shown in [11].

(a) Three vehicles, no depot (b) Four vehicles with a depot

Fig. 5. Example of found solutions with and without a common depot.

The same ideas can also be applied in the context of the data
collection planning. Examples of multi-vehicle data collection
paths are visualized in Fig. 5.

VI. RESULTS

We have evaluated the proposed unifying data collection
planning approach in several data collection problems. In
this section, the performance of our SOM-based approach is
compared with an existing deterministic combinatorial algo-
rithm proposed in [9]. The combinatorial approximate PC-
TSPN algorithm is based on decomposing the problem into
the determination of a covering set and a consecutive solution
to the TSP. A set of goal locations is determined from the
neighbouring sensors defined by the communication radius ρ.
A heuristic [22] is utilized to determine a subset of this
covering set. The resulting TSP is then solved optimally using
the Concorde solver [26]. We denote this solution from prior
work as PC-TSPN in the presented results.

Two variants of the proposed unsupervised learning pro-
cedure are considered. The first variant uses the SOM-based
method as a sole algorithm to simultaneously determine both
the goal locations and a tour to visit these locations. In the sec-
ond variant, the SOM adaptation is utilized only to determine
the goal locations. Then, the TSP of these goal locations is
solved optimally by the Concorde solver [26] (similarly as the
combinatorial PC-TSPN algorithm). We denote these variants
as SOM and SOM+TSP, respectively, in the rest of the paper.

All three algorithms are evaluated in scenarios with random
deployments of sensors and varying ratios of mutual distances
between them. The associated penalty for not collecting data
from a sensor is also varied. In addition, the algorithms are
compared in a realistic underwater monitoring deployment.

A. Random Deployments of Sensor Stations

In this evaluation, the solution quality provided by the algo-
rithms is compared in random problem instances with different
penalties and communication radius ρ. These instances include
the standard TSP (for ρ = 0 and very high penalties), PC-TSP
(for ρ = 0), and TSPN (for ρ > 0 and very high penalties).
A penalty for each sensor station is drawn from a uniform
distribution for low, middle, high, and very high values of the
penalty (see Table II). The communication radius is set to the
range 0 ≤ ρ ≤ 50 km.

TABLE II
CONSIDERED VALUES OF PENALTIES IN THE RANDOM DEPLOYMENTS

Penalty Assignment Schema Penalty Range

very high penalties 0 ≤ ζ ≤ 25000

high penalties 0 ≤ ζ ≤ 250

middle penalties 0 ≤ ζ ≤ 25

low penalties 0 ≤ ζ ≤ 5

Three data collection scenarios are considered for random
deployments of sensors. The first scenario consists of 100
randomly placed sensors in a 100 km × 100 km area. To
further study the influence of different penalty ratios and
distances between the sensors, an additional scenario with 100
randomly placed sensors within a 200 km × 200 km large
area was created. An average vehicle speed of 5 km per hour
is assumed, and thus the sensors are effectively placed in 20 ×
20 and 40 × 40 large squares, respectively. The cost between
the locations is directly computed as their Euclidean distance
(similarly to [9]). The scenarios are denoted as 100 km ×
100 km area and 200 km × 200 km area, respectively. For each
scenario, 50 random instances were created, and for each such
an instance, the penalties were assigned according to the four
different schemata depicted in Table II. The communication
radius ρ is set to one of 11 different values from the range 0
to 50 km, which provides 4400 random problems.

Finally, we consider random values of the penalties in an
additional sensor placement scenario (denoted as OOI area)
taken from the Ocean Observatories Initiative (OOI) [42]
(see Section VI-B for more detail) from which 50 random
problems were created for the penalties assignment schemata
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from Table II. The same ρ values as for the prior scenarios
are considered in these problems.

The total number of problem instances evaluated in this
study is 5500. Only a single trial per each problem is solved by
the deterministic PC-TSPN algorithm [9]. However, 50 trials
are solved for each instance by the stochastic SOM algorithms,
which gives 275,000 trials per algorithm variant.

To study the algorithms’ performance using such a huge
set of results, the solution quality is standardized as a ratio
to a reference value. Using the ratio as the solution quality
indicator, we can aggregate the results according to a particular
penalty schema and communication radius ρ. Since optimal
algorithms for the general TSPN and PC-TSP are not available,
we instead use the optimal solution of the TSP as the reference
value, which can be straightforwardly computed by any avail-
able TSP solver. The selected solution quality indicator is thus
the ratio of the solution cost provided by the tested algorithm
to the cost of the optimal solution of the related standard TSP,
i.e., without penalties and consideration of the communication
radius ρ. Such a reference solution is found for each problem
instance by Concorde [26]. Having an optimal tour TTSP of
the underlying TSP, the ratio is computed as

R =
C(T )

C(TTSP )
. (4)

The average results of R are presented in Fig. 6, Fig. 7,
and Fig. 8, where the standard deviations are shown as error
bars. Due to the way the ratio is computed, we note that it
is expected an algorithm for the PC-TSPN outperforms the
optimal solution of the underlying TSP because the solution
of the PC-TSPN can benefit from consideration of the com-
munication radii and penalties. Regarding the cost function
(1) of the autonomous data collection mission, a lower value
of R means a better solution, and thus an algorithm that
provides lower R is a more suitable for these missions. In
the 100 km × 100 km area and 200 km × 200 km area
scenarios, the proposed SOM provides improved results in
comparison with the combinatorial PC-TSP heuristic. The
main differences between SOM and SOM+TSP approaches are
for the problem instances with ρ = 0, which are solutions of
the TSP (or PC-TSP). This is because the SOM provides only
an approximate solution of the TSP. Regarding the particular
results for these standard TSP instances, the average difference
between the solution quality and the optimal solution is about
3–5%. Similar results can be observed in other SOM-based
solvers for the standard TSP (e.g., see [31], [33]). Regarding
the performance of the PC-TSP heuristic [9], the ratio R close
to 1 indicates the sensor selection is not evident, as mostly
all sensors are visited by the provided solution. A noticeable
improvement by sensor selection can be seen in Fig. 7d, where
SOM selects better sensors than the deterministic heuristic.

For the OOI area scenario with low penalties, the determin-
istic PC-TSPN algorithm provides lower solution cost than the
SOM-based approaches for 5 ≤ ρ ≤ 30 km. This is because
the penalties with respect to distances between sensors are so
low that it does not make sense to travel to different places, and
solutions consist of data collection from a single goal location.
In this case, the SOM adaptation algorithm simply performs a

random selection of the location and overall provides worse so-
lution than the deterministic algorithm. However, this situation
can be easily detected without any significant computational
cost as follows. If the total cost for such a single goal location
solution is lower than the previous tour cost, it can be used
as a new solution to the problem. Results for this modified
algorithm (denoted as SOM+1GT in Fig. 8d) indicate that in
these problems, the penalties are too low, and the PC-TSPN
degrades to selection of the single best covering goal location.

Required Computational Time: The required computational
time mostly depends on the number goal locations, which is
higher for high penalties and low ρ. Therefore, in Fig. 9, the
computational time is shown only for the 100 km × 100 km
area scenario. The evaluated algorithms are implemented in
C++, and all results have been computed using a single core
of the iCore7 processor running at 3.4 GHz. The most time-
consuming part of the algorithms is the optimal solution of the
TSP using [26], which increases the computational time sig-
nificantly for the deterministic PC-TSP heuristic algorithm [9].
On the other hand, the SOM algorithm provides solutions in
tens of milliseconds (less than 20 milliseconds), which is about
5 times faster than our early results [13]. Additionally, the
radius ρ is more important for computational considerations
than the penalties because the adaptation is less demanding
with increasing ρ than for decreasing penalty values.

B. Underwater Monitoring Deployment

The proposed SOM-based algorithm was also tested using
example configurations from the Ocean Observatories Initia-
tive (OOI) Endurance Array [42]. The OOI Endurance Array is
a project to continuously maintain a presence of Autonomous
Underwater Vehicles (AUVs) off the coast of the Pacific
Northwest (Washington and Oregon) with the intention of
monitoring important biological and physical measurements.
In this paper, we primarily consider the case where a single
AUV is deployed and focus on single vehicle missions.

A sensor placement based on the OOI Endurance Array was
used to evaluate performance of the SOM-based solver for the
PC-TSPN in a more realistic case. In simulation, 100 sensors
are placed along the planned AUV paths, and we assume that
the sensors and AUV are equipped with acoustic modems
for wireless communication [5]. The range of these modems
can vary depending on power and environmental conditions,
which corresponds to the size of the neighborhoods. Ranges
up to 50 km are possible with existing technology [43]. The
placement of the sensors is visualized in Fig. 10.

The penalty (prize) assigned to each sensor is based on
the variance of a Gaussian Process (GP) [44]. A GP is a non-
parametric Bayesian inference technique to estimate a quantity
of interest (e.g., temperature, salinity, chlorophyll, or dissolved
oxygen) and also predict the variance of those estimates. The
output of the GP is an estimate of the quantity of interest at
each point in space along with an uncertainty in each estimate.
The GP has been employed in the literature as a way of
measuring sensing performance because reducing the variance
correlates with an improved estimate of a quantity of interest
over a spatial field [45].
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Fig. 6. Mean ratios R of the solution cost relative to the optimal solutions of the related TSP in the 100 km × 100 km area scenario. Lower ratios correspond
to better performance.
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Fig. 7. Mean ratios R of the solution cost relative to the optimal solutions of the related TSP in the 200 km × 200 km area scenario. Lower ratios correspond
to better performance.
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Fig. 8. Mean ratios R of the solution cost relative to the optimal solutions of the related TSP in the OOI area scenario. Lower ratios correspond to better
performance.
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Fig. 9. Mean computational time (in milliseconds) for the problems in the 100 km × 100 km area scenario.

In the simulations presented, we input sensor data of ocean
temperature from the Regional Ocean Modeling System [46]
into a GP. The commonly used squared exponential kernel
is employed to model correlations between points. Then,
hyperparameters were learned using conjugate gradient ascent
on the marginal likelihood. The resulting variance was then
utilized as the penalty for not collecting data from each sensor
in the configuration in Fig. 10. This setup yields an instance
of the PC-TSPN similar to those described throughout the

paper. The mean costs of the solutions in the OOI scenario
are depicted in Fig. 11. The SOM-based approach provides
substantial improvement over the PC-TSPN heuristic in this
real-world monitoring scenario.

An example of a solution in the OOI scenario is depicted
in Fig. 12. In this example, the vehicle collects data from
all sensors. The performance improvement of the SOM-based
approach lies in the determination of goal locations. The
deterministic PC-TSPN algorithm visits the sensor locations
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Fig. 10. OOI Endurance Array [42] of autonomous underwater vehicles
monitoring the ocean. Simulated sensors are placed along the monitoring lines
on the seafloor (red squares). Figure courtesy J. Barth and D. Reinert, Oregon
State University.
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Fig. 11. Solution cost provided by the proposed SOM-based algorithms and
the deterministic PC-TSPN heuristic in the OOI data collection scenario (see
Fig. 10). The penalties correspond to the variance of a Gaussian Process.

themselves as a part of the tour, but the SOM-based approach
is able to select new locations to visit and improve the tour
cost. The most essential locations are shown by the red discs,
which are found in the distant part of the environment. Data
from a number of sensors are collected when the vehicle
travels to these locations.

C. Multi-Vehicle Mission

The OOI scenario was considered for a preliminary eval-
uation of the proposed planning method in multi-vehicle
missions. Solution costs for 1 to 10 vehicles for two types
of the missions are depicted in Fig. 13. The first type is a
mission with the common starting location (depot), and the
second type is without it. The location of the depot is shown
in the example of found solutions in Fig. 5.

In the OOI scenario, all sensors are covered, and the results
indicate that a more than four vehicles do not provide a
significant improvement if vehicles start and return at the

(a) PC-TSPN [9], C = 647 (b) Proposed SOM, C = 484

Fig. 12. Solutions of the OOI deployment scenario for the communication
radius ρ = 30 km.
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Fig. 13. Solution costs for multi-vehicle missions with and without a common
depot in the OOI data collection scenario with ρ = 30 km.

common depot. This is caused by vehicles traveling to distant
sensors and covering other sensors along the path. With
increasing numbers of the vehicles, more and more vehicles
have zero path length, which means they are not used in the
data collection. It seems that just four vehicles are enough to
retrieve data from all the sensors. This finding could prove
valuable for oceanographers looking to determine how many
AUVs to deploy in a given scenario. A further investigation
of multi-vehicle missions is needed to study this behavior and
to identify the most appropriate number of vehicles to collect
the required data in an efficient way.

D. Discussion

The proposed SOM-based algorithm for data collection
planning outperforms the deterministic heuristic for the PC-
TSPN [9] in almost all the problem instances examined. The
heuristic algorithm provides better solutions only for small
communication radii (practically for ρ = 0) and problems
with high penalties, where the data collection problem is close
to the standard TSP. In these cases, the SOM-based solution
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of the combinatorial TSP is worse than the optimal solution
found by Concorde. This drawback can be addressed by the
determination of the goal locations by SOM and optimal
solution of the TSP in the proposed SOM+TSP, at the cost
of more computationally demanding algorithm.

The combinatorial heuristic approach also provides better
results when the solution is a single goal location, i.e., a single
location provides all the important measurements. In these
situations, the proposed SOM provides a solution consisting of
several goal locations, which are somewhat worse than the cost
of the single goal solution provided by PC-TSPN heuristic.
This is because the learning procedure starts with an empty
set of covered sensors. Then, the sensors are presented in a
random order, and the algorithm typically needs a couple of
goal locations to create a coverage that cannot be improved by
adaptation to other sensors. However, this case can be trivially
checked, as it is demonstrated by the proposed post-processing
procedure in the SOM+1GT variant. Moreover, the PC-TSPN
heuristic does not appear to provide stable behavior since the
average solution cost is increased for a higher neighborhood
size (see Fig. 8d). Therefore, the proposed post-processing is
competitive with the PC-TSPN heuristic.

Regarding instances with low penalties and a high neigh-
borhood size (large communication radius), it is also worth
mentioning the solutions form small tours that cover a small
random subset of the sensors. This is an indication that
penalties are not set appropriately or the problem does not
fit the PC-TSP problem formulation well. According to our
observations, we believe this is related to the assumptions
of static penalties and independent sensor measurements. The
proposed SOM-based algorithm’s low computational require-
ments would allow for further extension to compute the
penalty values during the learning process [47], which could
improve the solution quality.

The main difference between the pure SOM and SOM+TSP
algorithms is for the zero neighborhood size and high penalty,
where the optimal solution of the TSP improves the quality
of the solution noticeably. Hence, it seems that determining
appropriate goal locations affects the solution cost more than
providing the optimal tour. The results also indicate that for
problems with ρ > 0, the SOM-based unsupervised learning
procedure provides solutions to the underlying TSP that are
competitive to the optimal tour found by Concorde. The
slightly worse solution of the TSP provided by the pure
SOM-based approach is often negligible relative to the overall
solution cost improvement gained by the SOM selection of
the subset of the sensors and determined goal locations.

The presented results for the examined single vehicle data
collection missions provide supporting evidence that the SOM-
based planning approach is competitive with the combinatorial
heuristics. An additional benefit of the proposed SOM-based
approach is the ability to address multi-vehicle missions,
which has been briefly described in Section V. The preliminary
results show that SOM can provide solutions to multi-vehicle
problems; however, we found that the quality of solutions has a
higher variance than in the presented single-vehicle missions.
Regarding the scaling of the approach with the number of
vehicles, the key aspect of provided solutions is the situation

when more vehicles do not improve the mission performance.
This may be caused by a characteristic of the problem or by
a behavior of the proposed adaptation procedure. A study of
these aspects and eventual improvement of the solution quality
is a subject of our future work [48].

VII. CONCLUSION

This paper proposed a unifying approach for planning data
collection missions using a multi-goal path planning frame-
work. The particular class of data collection tasks consisted
of problems where it is necessary to consider penalties on
unvisited sensors (goals) and the sensors are surrounded by
neighborhoods (goal regions). The presented results indicate
the proposed SOM-based planning approach outperforms cur-
rently available combinatorial heuristic approaches and pro-
vides improved solutions in all the problem variants examined:
the TSPN, PC-TSP, and PC-TSPN. Moreover, the proposed
SOM-based approach has substantially lower computational
requirements for the problems with a high number of deter-
mined goal locations.

Although the combinatorial heuristics for the TSP provide
better (or even optimal) solutions of the standard TSP versus
the applied SOM-based unsupervised learning in the data
collection tasks, the main source of the solution improvement
relies on the selection of the most appropriate goal locations
within the sensor neighborhoods (i.e., considering communica-
tion radii) during the planning. Besides, once the goal locations
are determined, the related TSP on such goal locations can
always be solved optimally to further improve the solution, but
at the cost of significantly higher computational requirements.

Based on the presented results of the algorithms’ perfor-
mance, it seems the main difficulty in solving the addressed
data collection problems in the desired way relies on designing
appropriate penalties according to the vehicle travel cost to
move between the sensor stations. This difficulty stems from
the penalty values being domain specific and depending on
the phenomena studied. In addition, the current formulation
of the problems assumes that sensors provide independent
measurements. Therefore, online determination of the sensor
penalties during the unsupervised learning is a subject of our
future work to overcome this limitation.
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[32] J.-C. Créput and A. Koukam, “A memetic neural network for the
Euclidean traveling salesman problem,” Neurocomputing, vol. 72, no.
4-6, pp. 1250–1264, 2009.

[33] J. Faigl, “On the performance of self-organizing maps for the non-
euclidean traveling salesman problem in the polygonal domain,” Infor-
mation Sciences, vol. 181, pp. 4214–4229, October 2011.

[34] J. Zhang, X. Feng, B. Zhou, and D. Ren, “An overall-regional com-
petitive self-organizing map neural network for the euclidean traveling
salesman problem,” Neurocomputing, vol. 89, pp. 1–11, 2012.

[35] S. Alatartsev, S. Stellmacher, and F. Ortmeier, “Robotic task sequencing
problem: A survey,” Journal of Intelligent & Robotic Systems, vol. 80,
no. 2, pp. 279–298, 2015.

[36] J. Faigl and G. Hollinger, “Self-organizing map for the prize-collecting
traveling salesman problem,” in Advances in Self-Organizing Maps and
Learning Vector Quantization: Proceedings of the 10th International
Workshop (WSOM), 2014.

[37] W. Zhang, Y. Bai, and H. P. Hu, “The incorporation of an efficient
initialization method and parameter adaptation using self-organizing
maps to solve the TSP,” Applied Mathematics and Computation, vol.
172, no. 1, pp. 603–623, 2006.
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