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Abstract This paper reports on ongoing work towards an extension of the self-
organizing maps for the traveling salesman problem to more challenging problems
of multi-goal trajectory planning for complex robots with a high-dimensional config-
uration space. Themain challenge of this problem is that the distance function needed
to find a sequence of the visits to the goals is not known a priori and it is not easy to
compute. To address this challenge, we propose to utilize the unsupervised learning
in a trade-off between the exploration of the distance function and exploitation of its
current model. The proposed approach is based on steering the sampling process in
a randomized sampling-based motion planning technique to create a suitable motion
planning roadmap, which represents the required distance function. The presented
results shows the proposed approach quickly provides an admissible solution, which
may be further improved by additional samples of the configuration space.

1 Introduction

Self-OrganizingMap (SOM) is a type of neural network that can provide a non-linear
mapping of a high dimensional input space into a lower dimensional output space. In
addition to data processing, visualization, and classification, it has also been success-
fully applied in optimization routing problems, in particular, the Traveling Salesman
Problem (TSP). The TSP is a well-defined optimization problem arising from many
practical scenarios and several SOM-based approaches have been proposed, e.g.,
see [2, 14]. In our case, the TSP is a problem formulation for robotic tasks like
inspection, surveillance, and data collection where a mobile robot is requested to
visit a set of locations, e.g., to perform an operation or take a sensor measurement
[3, 4, 8, 11].
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Themost straightforward application of SOM to the TSP is in Euclidean instances,
where the problem stands to find a closed shortest tour connecting a given set of goal
locations (cities). In robotics, the problem is to find a shortest path connecting the
locations such that the path is collision free. This make an application of SOM to
the TSP a bit more challenging because a pure Euclidean distance cannot be simply
used in the computation of distances between neuron weights and the presented goal
location (signal) to the network; otherwise a poor solution would be found [5]. The
distance corresponds to the length of the shortest path between two locations, which
can be PSPACE-hard in 3D environment. Hence, the problem is called the Multi-
Goal Motion Planning (MGMP) problem rather than the TSP to emphasize difficulty
of distance queries.

Randomized sampling-based approaches aremotion planning techniques for plan-
ning in high-dimensional configuration space C that provide the so-called motion
planning roadmap, which is a graph representing collision free configurations in
C [9]. A combination of the roadmap with SOM for a graph input [13] has been pro-
posed in [6] to solve the MGMP by SOM. In this decoupled approach, the roadmap
(graph) is constructed independently on the planning problem, and therefore, a com-
plete graph is unnecessarily dense.

In this paper, we report our recent results on application of SOM in the roadmap
generation and solution of the MGMP problem. The main idea of the proposed
approach is based on combining principles of the optimal motion planning algo-
rithm called Rapidly-exploring Random Graph (RRG) [7] with the SOM adaptation
principles to simultaneously determine the sequence of the goal visits together with
trajectories connecting the goals in the tour. The core of the proposed approach is a
utilization of the SOM adaptation to steer a randomized sampling of C to increase
the number of samples in the most promising areas to quickly find a solution and
eventually improve quality of the final trajectory.

A feasibility of this idea has been reported in [12], where it has been employed
in finding multi-goal trajectories for a hexapod walking robot. The proposed SOM-
based algorithm needs a lower number of the roadmap expansions to find a first
feasible solution of the MGMP problem in comparison to a straightforward MGMP
solver based on a given sequence of visits to the goal locations.

Here, we focus on two main aspects of the proposed approach: (1) a detailed
evaluation of the idea of SOM-based expansion of the roadmap to find an initial
solution of the MGMP; and (2) improving the quality of the final solution with
increasing number of the roadmap expansions. Based on the evaluation, we propose
a hybrid approach that consists of the initial construction of the roadmap by SOM
to find the first feasible solution followed by a consecutive roadmap improvement to
find a shorter trajectory.

The paper is organized in the following way. The problem statement, notion of
the configuration space C, and related background is presented in the next section.
The key idea of the SOM-based steering of the roadmap expansions using the RRG
is briefly described in Sect. 3. Considered MGMP solvers are presented in Sect. 4
and results of their evaluation are in Sect. 5. Concluding remarks and future work
are summarized in Sect. 6.
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2 Problem Statement

The problem addressed by the proposed approach is motivated by autonomous data
collection with a hexapod walking robot operating in a rough environment to collect
samples, e.g., images, of the requested areas of interest, see Fig. 1. The robot has six
legs, each with three joints that gives 18 control degrees of freedom, which together
with the robot position and orientation in the 3D environment gives 24 dimensional
vector fully describing the position of the robot body in the environment. Therefore,
it is controlled by designed gait patterns and a set of motion primitives to simplify the
motion control and planning [12]. In addition andwithout loss of generality, the robot
pose (x, y, θ) is considered as the robot position on a surface x, y with orientation θ .

The working environment W ⊂ R
3 is represented as a set of obstacles O ⊂ W .

The configuration space C describes all possible configurations of the robot in W
and can be defined as follows. Let the robot body at q beA(q), then the configuration
q is a collision free if A(q) ∩ O = ∅. All configurations for which the robot is in
a collision with the obstacles O are denoted as Cobst , Cobst ⊆ C. The point of our
interest to find a solution of the MGMP is a collision free part of C, which can be
denoted as Cfree = cl(C \ Cobst), where cl(.) is the set closure.

A collision free path from some starting configuration qstart to a goal configuration
qgoal is a continuous curve κ in Cfree, such that κ : [0, 1] → Cfree with κ(0) = qstart

and d(κ(1), qend) < ε. The end point κ(1) of the path found by a motion planner
will unlikely be exactly the requested goal location, and therefore, we rather admit
an admissible distance ε of the path to the requested goal [7], e.g., 5 cm. Then, such
a collision free path is called an admissible path.

Similarly to a simple trajectory, a multi-goal trajectory visiting a set of n goal
locations G = (g1, . . . , gn) can be defined as follows. Let the sequence of the visits
to the locations be (v1, v2, . . . , vn) for which vi ∈ G and

⋃
1<i≤n vi = G. Then, an

admissible multi-goal trajectory is a closed trajectory τ : [0, 1] → Cfree such that
τ(0) = τ(1) = qstart and for which there exists n points on τ such that 0 ≤ t1 ≤ t2 ≤
· · · ≤ tn and d(τ (ti), vi) < ε.

Having the aforementioned preliminaries, the MGMP problem can be formu-
lated as follows: For the given goal locations G, configuration space C, an
admissible distance ε, and a monotonic, bounded, and strictly positive cost

Fig. 1 Robot, its geometrical model, and visualized 3D environment
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function c: find an admissible (according to ε ) trajectory τ ∗ such that c(τ ∗) =
min{c(τ ) | τ is admissible multi-goal trajectory}.

2.1 Randomized Sampling-Based Motion Planners

Sampling based motion planning techniques have been proposed to address diffi-
culty of explicit representation of Cfree for a complex shape of the robot body and
its high-dimensional C [9]. These techniques sample Cfree into a finite number of
configurations that are connected into a graph, where an edge represents a collision
free trajectory between two configurations. Hence, Cfree is represented by a graph
and the key problem is how to efficiently create the graph (roadmap) in which the
requested trajectory can be found, e.g., by a graph search technique.

In this work, we consider RRG [7] to create a graphGRRG = (VRRG, ERRG), which
represents the motion planning roadmap. The set of vertices VRRG are particular con-
figurations of the robot q ∈ Cfree and an edge e ∈ ERRG describes a feasible collision
free motion between two configurations vi, vj ∈ VRRG, i 
= j. The graph is incremen-
tally constructed by the RRG algorithm as a result of the graph expansion from the
nearest vertex of the graph towards a random sample by applying a particular control
command. Themain steps of the RRG expansion are depicted in Fig. 2, further details
can be found in [7].

2.2 Basic Background of Self-Organizing Map for the TSP

The proposed MGMP solvers are based on SOM for the TSP, in particular, a variant
for a graph input [13]. The neural network is structured in two layers. The first layer
servers for presenting goal locations to be visited and towards which the network is
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Fig. 2 An expansion of the RRG roadmap (from left to right): First, a random (collision free)
configuration qrand is sampled and the nearest vertex qnearest ∈ VRRG is determined; Then, the most
suited control command is applied to expand the roadmap towards qrand by a collision free trajectory
and a new configuration qnew is added to the roadmap; To further improve the roadmap, all vertices
within a ball with a particular radius r (see [7]) centered on qnew are connected with qnew by a
collision free trajectory
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adapted using the self-organizing principles. The output layer consists of m units,
N = {ν1, . . . , νm}, which represent neurons weights, where m is set according to
the number of goal locations n, e.g., m = 2.5n. The units are organized into one-
dimensional array that represents a sequence of configurations in Cfree. The learning
procedure can be summarized as follows:

1. Initialization—Create a ring of connected neurons N = {ν1, . . . , νm}.
2. Randomization—Create a random permutation of goals Π(G) ← permute(G).
3. Winner selection—Select the best matching neuron ν∗ to the currently presented

goal g ∈ Π(G); ν∗ ← argminν∈N d(ν, g).
4. Adaptation—Adapt the winner ν∗ and its neighbouring nodes νj within the dis-

tance k (in the number of nodes) using the neighbouring function f (σ, k) =
μe(−k2/σ 2) for k < 0.2m and f (σ, 0) = 0 otherwise. Remove g from the permuta-
tion, Π(G) ← Π(G) \ {g}, and If |Π(G)| > 0 go to Step 3.

5. Update the number of the learning epochs and neighbouring function variance.
6. Termination condition—If termination condition is met, stop the adaptation.

Otherwise go to Step 2.
7. Final tour construction:—Traverse the output layer and use the associated goals

to the last winners to construct the final goal tour.

The adaptation of neurons can be imagined as a movement of the neurons towards
the presented goal location. For a graph input, the neurons weights are restricted to
be at the graph edges or vertices and the adaptation can be imagined as neurons
movements along the graph edges [13]. Thus, for an adaptation in the roadmap GRRG

with spatially close vertices (such that provided by the RRG), we can consider the
neuron weights as a particular configuration represented by the closest vertex from
VRRG.

Notice, even though we can use SOM to find a solution of the MGMP on GRRG

like in [6]; here, we are rather interested in employing the adaptation procedure to
grow and improve the roadmap GRRG by the RRG expansions.

3 SOM-based Steering of Randomized Sampling in RRG

The fundamental issue of applying SOM to the given problem is that the selection of
the winner node to a presented location g is based on computing a distance d(ν, g)

between nodes ν ∈ N and g. Such a distance corresponds to the length of the tra-
jectory from ν to g, which is obviously not known due to a sparse coverage of C
by GRRG, especially at the beginning of the learning. In [12], we propose to address
this issue by the approximation that combines Euclidean distance and the current
knowledge about Cfree stored in the incrementally built GRRG.

Regarding a collision free and feasible trajectory inW , the current roadmap GRRG

provides a much more realistic estimation of the expected distance d(ν, g) than a
pure Euclidean distance. Therefore, a part of d(ν, g) is based on a trajectory in GRRG

from ν towards the vertex wν,g that is found as
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Fig. 3 SOM adaptation with GRRG expansions, from left to right: First, vertex wν,g is found in
RRRG using (1) for the current winner ν (green disc); The expected position ν′ of the neuron after
the adaptation is determined; which is then utilized together with g in the RRG expansion of GRRG;
Finally, new wν,g is found and ν is updated to the nearest vertex to the expected position of ν

wν,g = argminv∈VRRG
(c(κν,v) + |(v, g)|2), (1)

where c(κν,v) is the trajectory cost from the intermediate vertex w determined in
GRRG and |(v, g)| is the Euclidean distance from v to g. Thus, the path from ν to g
consists of the trajectory κν,wν,g in GRRG and a straight line segment from wν,g to g.
Notice, the cost found in the roadmap should be preferred and the influence of the
Euclidean distance should be suppressed, that is why it is in power of two in (1). The
found path is utilized in adaptation of neurons to g.

However, the path over the vertex wν,g cannot be directly used for a new position
of the adapted neuron because the expected position of the neuron may be out of the
current roadmap GRRG. Therefore, the expected position of the neuron after the adap-
tation is determined and the roadmap is expanded towards it and the location g using
the RRG expansion accompanied by the goal bias and goal zooming techniques [10]
(in which a random sample is substituted by the given location and sampled around
the location, respectively). Then, the vertex wν,g is determined again in the updated
roadmap and a new expected position of the neuron being adapted is restricted to
the nearest vertex of GRRG. Hence, the approximation together with the proposed
adaptation of neurons turns out to a steering strategy to randomized sampling in the
RRG. The process is schematically visualized in Fig. 3.

4 Solvers for the Multi-Goal Motion Planning Problem

The proposed approach to solve the MGMP problem consists of two steps. First, a
roadmap GRRG is created. An admissible solution of the MGMP problem is found
if all locations g ∈ G have its corresponding (nearest) configuration vg ∈ GRRG in
less than ε distance from the particular g and there exists a trajectory in GRRG that
connects all the locations G. The final shortest multi-goal trajectory is found in GRRG

as a solution of the TSP using Chained Lin-Kernighan heuristic [1].
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An admissible trajectory can be found in GRRG if all vertices representing the goal
locations are connected. The quality of the final trajectory depends on the roadmap
and basically a denser roadmap may provide shorter trajectories at the cost of more
demanding computations. The key to efficiently find a good trajectory is in the
construction of the roadmap. Various methods how to steer the expansion of GRRG

can be proposed. The SOM-based steering of the RRG has been firstly introduced
in [12]. The idea has been further investigated and the improved method is presented
here. Moreover, we considered the proposed idea utilized in SOM steering also in
a direct construction of the roadmap to verify the added value of the unsupervised
learning. The proposed roadmap construction methods are briefly summarized in the
following paragraphs.

Naive construction of the roadmap is based on iterative roadmap expansions
towards the locations G that are alternating in a sequence found as a solution of the
Euclidean TSP. Each location is iteratively used in the goal zooming technique for 5
expansions and the process is repeated until the maximum number of expansions M
is not reached. The ball expansions of the RRG are activated after 100 alternations of
the whole sequence, to reduce the computational burden and improve convergence
of the roadmap to an admissible solution.

SOM expansion is based on the steering strategy described in Sect. 3 that is
accompanied by additional expansions towards the presented location g ∈ G to the
network, which support a fast convergence of the roadmap to G. If g is not yet
connected with the roadmap, 20 expansions towards g are performed using g in goal
zooming prior adaptation of the winner neuron towards g. After that, the proposed
SOM steering is employed. Similarly to Naive method, the ball expansions of the
RRG are suppressed for the first 10 learning epochs.

Rand variant of the roadmap construction is based on additional expansions to
G used in the SOM method. It is similar to the Naive method, but the sequence of
locations G is a random permutation as in SOM. Each location g ∈ G is used in goal
zooming for 20 expansions. Then, the algorithm continues with the next location in
the sequence. Once all locations are used, a new permutation of G is created and the
process is repeated up to M roadmap expansions are performed.

MST method represents an existing approach for the MGMP [11] based on an
iterative determination of the Minimum Spanning Tree (MST) as approximation of
the TSP. TheMST is initially determined using Euclidean distances that is iteratively
refined using an “optimal” motion planner to find corresponding trajectories for all
MST edges until all the edges represent admissible trajectories. An optimal motion
planning is too computationaly demanding for the hexapod robot, and therefore, the
MST is used to steer roadmap expansion. For eachMSTedgewithout a corresponding
trajectory in the roadmap, 20 expansions towards the edge’s endpoints are performed
for every iteration of the MST refinement. This is repeated until an admissible multi-
goal trajectory is found.

Because the SOM method provides a first admissible solution very quickly, two
hybrid approaches are proposed: Naive-SOM and Rand-SOM. The SOM method
is utilized to find the first admissible solution. Then, the Naive and Rand approaches
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are used up to M expansions of the roadmap, respectively. In a similar way, the
MST is utilized in the Rand-MST to further improve initial solution provided by
the MST-based method.

5 Evaluation Results

The roadmap expansion strategies have been evaluated for a hexapod walking robot
and several scenarios of the MGMP problem in the environment called potholes,
see Fig. 1. A particular difficulty of the problem depends on spatial distribution of
the goal locations in the environment. Therefore, 20 random problem instances are
created in the given environment. Each instance is solved 20 times by each particular
algorithm because all algorithms are stochastic, and the results are presented as
average values accompanied by standard deviations.We considered problemswith 10
goal locations (n = 10) as sufficient to demonstrate difficulty of constructing roadmap
for the multi-goal trajectory planning. Particular algorithms have been evaluated
for different parameters; however, only selected results are presented because of
the space limit. The total number of the evaluated scenarios was more than twenty
thousands. Examples of constructed roadmaps, the first admissible solution found
by SOM, and the final found solution found by the Rand variant are shown in Fig. 4.

The most time consuming step in the solution of the MGMP problem is a sin-
gle roadmap expansion, which, in the case of the RRG, is a more computationally
demanding with increasing number of roadmap vertices. Moreover, it is even more
demanding in the improving phase, where expansions are performed for vertices
in the ball around the last added vertex to the roadmap. Therefore, the number of
performed roadmap expansions is the main performance indicator.

The first evaluation is focused on the performance of the roadmap expansion
strategies in finding the first admissible solution with the maximal number of expan-
sions restricted to 100000. The results for 400 trials on 20 problems solved by each
approach are depicted in Table1 (values are computed from admissible solutions).

(a) (b) (c) (d)

Fig. 4 Build roadmaps by Naive and SOM-based approaches after performing M expansions. A
path found by the Rand approach after 204 357 expansions. Obstacles are in brown, goals are
represented as green discs, roadmap edges are purple segments, and a multi-goal trajectory is in
black. a Naive, M = 10000. b Naive, M = 20000. c SOM, M = 597. d Rand, M = 204357
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Table 1 Roadmap construction for determining a first admissible solution

Method Naive SOM Rand MST

Success rate 54% 93 % 61% 45%

Average number of the RRG expansions 85 468 14 258 66 375 70 241

Average number of the roadmap vertices 24 698 5 662 25 781 37 815

Average number of the roadmap edges 142 472 16 218 109 096 84 372

Average required CPU time [s]* 39 13 56 209
*Indicative values because several machines of different configurations have been used

Here, we can observe that the same randomized schema utilized in SOM and Rand
strategies provide different performance. Moreover, the MST-based approach pro-
posed in [11] does not provide significant advantage over Rand and its more demand-
ing because of determination of the MST. The results support the evidence that the
proposed SOM-based steering significantly improves the performance in finding the
first admissible solution. The main results is that SOM provides fastest admissible
solutions with a high success rate.

Notice, the number of the roadmap vertices is always lower than the number of
expansions. A higher number of vertices indicates a successful expansion of the
roadmap and similarly a higher number of edges indicates a denser roadmap as a
result of the improving step of the RRG.

The next evaluation has been focused on the quality improvement of the found
multi-goal trajectory according to increasingmaximal number of the performedRRG
expansions. We found out that the proposed SOM improves solutions only slowly
withmore expansions, and therefore,we consider it only infinding thefirst admissible
solution in the hybrid approaches Naive-SOM and Rand-SOM. The quality of the
trajectory is considered as a ratio of the trajectory length to the best found solution
for the particular problem determined from all the performed trials. This allows
to aggregate results for various problem instances, for which trajectories may be
significantly different. Thus, values of the ratio close to 1 indicate the particular
approach provides relatively high quality solutions among the evaluated algorithms.
The results for increasing number of roadmap expansions are depicted in Fig. 5.

Discussion—Based on the performed evaluation of the steering strategies of the
randomized sampling in the RRG, the results support that the proposed SOM-based
strategy provides the first admissible solution with a significantly less number of
expansions than other strategies. However, the solution quality does not improve
with more expansions and thus the current form of the strategy is suitable only for
finding an admissible solution. On the other hand, the proposed combination of the
SOM and randomized expansions in the hybrid solvers provide benefits of the both
approaches and it seems to be a suitable technique to provide the first solution quickly
and further quality improvements.

An important lesson learned from the presented evaluation is that the way how
the roadmap is initially created significantly affects the ability to find an admissible
solution quickly. Here, the SOM adaptation provides an efficient trade-off between
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Fig. 5 Success rate and quality of the found trajectories

exploration of C and exploitation of the currentGRRG towards connecting the required
goal locations. However, once the locations are connected in the roadmap, the adap-
tation process only moves neurons along the roadmap and does not explore possible
shortcuts to improve the solution.

6 Conclusion

An evaluation of four multi-goal trajectory planners is presented in this paper. The
results indicate the proposed SOM-based roadmap expansion improves finding the
first admissible solution. However, a planner solely based on the SOM strategy does
not improve the found solution, but the solution can be improved by additional
expansions of the roadmap. Although the current achieved results does not meet the
expectation of a motion planner solely based on SOM, it support feasibility of the
SOM-based simultaneous building of the distance function approximation together
with its utilization in the multi-goal trajectory planning.

Regarding the applied SOM based principles, the whole graph GRRG can be con-
sidered as a growing neural network, where the adaptation rules can be used to
remove not promising configurations and thus reduce the number of vertices of the
graph. Besides, they can also be utilized to further exploration of the configuration
space to improve quality of the found solution. Consideration of these extensions is
a subject of our further work.
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