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Abstract—This paper reports on the application of the self-
organizing map (SOM) to solve a novel generalization of the
Orienteering Problem (OP) for curvature-constrained vehicles
that is called the Dubins Orienteering Problem (DOP). Having
a set of target locations, each with associated reward, and a
given travel budget, the problem is to find the most valuable
curvature-constrained path connecting the target locations such
that the path does not exceed the travel budget. The proposed
approach is based on two existing SOM-based approaches to
solving the OP and Dubins Traveling Salesman Problem (Dubins
TSP) that are further generalized to provide a solution of the
more computational challenging DOP. DOP combines challenges
of the combinatorial optimization of the OP and TSP to determine
a subset of the most valuable targets and the optimal sequence
of the waypoints to collect rewards of the targets together
with the continuous optimization of determining headings of
Dubins vehicle at the waypoints such that the total length of
the curvature-constrained path is shorter than the given travel
budget and the total sum of the collected rewards is maximized.

I. INTRODUCTION

The problem addressed in this paper is motivated by data
collection missions in which an Unmanned Aerial Vehicle
(UAV) is requested to collect the most valuable measurements
from a set of target locations while respecting the limited
operational time of the UAV. Each target location has asso-
ciated reward that is collected by the vehicle whenever the
vehicle passes the location and takes a snapshot of the target
surroundings by a downward-looking camera in surveillance
missions [1] or using remote communication to read data from
a sensor [2], [3]. The problem is formulated as a variant of
the Orienteering Problem (OP) [4] that fits the requirements on
the curvature-constrained data collection paths for UAVs. The
considered problem formulation as a suitable form to address
data collection missions with curvature-constrained vehicles is
called the Dubins Orienteering Problem (DOP).

Having a set of target locations each with the associated
reward and specified the initial and final locations of the
vehicle, the regular OP stands to maximize the sum of the
collected rewards by a tour that does not exceed the given
travel budget [6]. The OP is similar to the combinatorial
optimization the Traveling Salesman Problem (TSP) in finding
the shortest tour connecting the given locations. However,
contrary to connecting all the locations by the shortest tour in
the TSP, a subset of the most valuable locations are connected
by the shortest tour in the OP to respect the given travel

Fig. 1. An example of real deployment of the UAV in data collection missions
and necessity to directly solve Dubins Orienteering Problem (DOP) [5].
A solution of the Euclidean Orienteering Problem (EOP) provides a path
with sharp turns which require to slow down the vehicle (which may not
be possible for fixed-wing UAV), or the vehicle misses the target locations
because of steering the vehicle motion by the path following controller.

budget. Therefore, the OP combines the Knapsack problem in
choosing the most rewarding locations and the TSP in finding
the shortest tour connecting the waypoints. In a case the travel
budget allows to visit all the target locations, the OP becomes
the TSP; hence the OP is at least NP-hard [4].

An important generalization of the OP to address the
motivational data collection is related to the kinematics con-
straints of UAVs, especially fixed-wing aircraft, which needs
a curvature-constrained path. A widely used vehicle model
is Dubins vehicle [7] and the generalized TSP to determine
the shortest curvature-constrained path visiting a set of target
locations is called the Dubins Traveling Salesman Problem
(DTSP) [8]. The main difficulty of solving the routing prob-
lems with Dubins vehicle is that the length of the path depends
not only on the distance between the waypoints but also on the
particular headings of the vehicle at each waypoint. Hence, the
DTSP combines challenges of the combinatorial optimization
of the TSP with the determination of the most suitable headings
which is a continuous optimization problem as the vehicle
heading at each target location can be arbitrarily selected from
the interval [0, 2π). Due to the computational complexity of
the DTSP, heuristics [9], [10], sampling-based algorithms [11],
evolutionary approaches [12], and recently also SOM-based
approaches [13], [14] have been developed.978-1-5090-6638-4/17/$31.00 c©2017 IEEE



Despite many approaches for the Dubins TSP have been
proposed, there is an only little effort to the generalization of
the Orienteering Problem for planning with Dubins vehicle,
i.e., the Dubins Orienteering Problem (DOP). The motivation
and importance of solving DOP is demonstrated in Fig. 1,
where a solution of the regular Euclidean OP does not conform
motion limits of the real utilized UAV. A possible way to solve
DOP can be based on the decoupled approach in which a subset
of the target locations to be visited by the vehicle is determined
as the regular Euclidean OP. Then, the final data collection path
can be found as a solution of the DTSP for such a subset.
However, such a tour may exceed the given travel budget, and
therefore, a direct solution of DOP is preferred. To the best
of our knowledge, the first such a direct approach for solving
DOP has been proposed in [5], where the randomized variant
of the Variable Neighborhood Search (VNS) technique [15]
has been augmented to deal with the constraints of Dubins
vehicle. The algorithm follows sampling-based approach for
the DTSP and possible headings at each target locations are
sampled into a finite set of headings, and the problem is solved
as a combinatorial optimization. In [5], 16 heading values per
each sensor location have been used as a trade-off between the
solution quality and required computational time.

The recent advancements on SOM for the OP and DTSP
are the main sources of motivation to address the DOP by
unsupervised learning and eventually avoid dense sampling of
the heading values necessary in the VNS-based approach [5].
The proposed approach is directly leveraging on the existing
SOM-based solution of the OP [16], [17] that is combined
with the principles employed in solving the DTSP proposed
in [13] and [14]. Although an application of SOM to solving
a combinatorial problem may be questionable, the main ex-
pected benefit of the unsupervised learning is in solving the
continuous optimization part of the problem, where it is needed
to determine the most suitable headings of the vehicle at the
waypoints. The presented results indicate that the proposed
SOM-based approach may provide Dubins tours of similar
length with a lower number of samples of the vehicle headings,
which significantly speedups finding a solution of DOP.

The rest of the paper is organized as follows. The addressed
problem is formally introduced in the next section. The pro-
posed SOM-based approach is presented in Section III. The
empirical evaluation of the proposed solution and comparison
with the VNS-based approach is presented in Section IV.
Concluding remarks and future work is in Section V.

II. PROBLEM STATEMENT

The addressed Dubins Orienteering Problem (DOP) is a
combination of the combinatorial Orienteering Problem (OP)
with the continuous optimization of headings at the way-
points. The problem is to determine a cost efficient curvature-
constrained path to retrieve the most valuable measurements
from a set of locations S placed in a plane S ⊂ R2 such
that, the total tour length does not exceed the given travel
budget Tmax. Each sensor si ∈ S has associated reward ri
that can be collected by the vehicle that visits the location
s during its travel along the data collection path. Regarding
the existing formulations of the OP [18], the starting and final
locations of the vehicle are prescribed as s1 and sn and their
associated rewards are zero, r1 = rn = 0, where n is the

total number of locations S, n = |S|. We aim to determine
the maximal rewarding data collection path that satisfies the
kinematic constraint of Dubins vehicle.

The state of Dubins vehicle can be described as q =
(x, y, θ) where p = (x, y) is the vehicle position in the plane
p ∈ R2 and θ is the vehicle heading θ ∈ [0, 2π), i.e., θ ∈ S1,
and thus q ∈ SE(2). The model of Dubins vehicle [7] assumes
the vehicle is moving with a constant forward velocity v and
its minimal turning radius is ρ. Having the control input u, the
vehicle motion can be described as ẋ

ẏ

θ̇

 = v

 cos θ
sin θ
u · ρ−1

 , |u| ≤ 1. (1)

The shortest curvature-constrained path respecting (1) that
connects two states qi, qj ∈ SE(2) is a straight line segment
(S) or consists of S and arcs with the curvature ρ that can
be one of two types: left (L) and right (R). The optimal path
connecting qi and qj can be computed analytically and the
path is one of six possible Dubins maneuvers: LSL, LSR,
RSL, RSR, LRL, and RLR [7]. However, to determine the
optimal path connecting two states in DOP, we first need to
determine the respective sensor locations si, sj ∈ R2 and
also the particular headings θi, θj ∈ S1 at these locations.
Moreover, it may not be possible to retrieve data from all the
locations S within the travel budget Tmax, and therefore, it is
necessary to select a subset Sk of k locations Sk ⊆ S from
which data can be retrieved by Dubins vehicle (1) traveling
along Dubins path with the length that does not exceed Tmax.

The initial and final locations of the vehicle are prescribed,
s1 ∈ Sk and sn ∈ Sk, and thus we need to determine a
sequence of waypoints (qσ1

, . . . , qσk
), where 0 ≤ σi ≤ n and

qσ1 = (s1, θ1) and qk = (sn, θn), such that each waypoint
qσi = (sσi , θi) consists of the sensor location sσi ∈ R2 and
the suitable heading at sσi with respect to Dubins maneuvers
connecting the waypoints. Having the k sensor locations Sk,
the problem to find the shortest Dubins path connecting the
waypoints, i.e., determining the sequence to their visits and
the respecting headings, can be considered as the Dubins
Traveling salesman problem (DTSP); however, the required
data collection path has to fulfill the travel budget Tmax.
Therefore, during the optimization, we need to search for the
k sensor locations Sk = (sσ1 , . . . , sσk

), the permutation of
their visits Σ = (σ1, . . . , σk), and the respecting headings
Θ = (θσ1 , . . . , θσk

). Having these preliminaries, the Dubins
Orienteering Problem (DOP) can be formulated as the opti-
mization problem:

maximize
k,Sk,Σ,Θ

R =
k∑
i=1

rσi

subject to
k∑
i=2

L
(
qσi−1 , qσi

)
≤ Tmax,

qσi
= (sσi

, θσi
), sσi

∈ Sk, sσi
∈ R2, θσi

∈ S1,
sσ1

= s1, sσk
= sn,

(2)
where R is the sum of the collected rewards and L(qσi−1

, qσi
)

is the length of Dubins maneuver from qσi−1
to qσi

[7].



III. SELF-ORGANIZING MAP FOR THE DUBINS
ORIENTEERING PROBLEM

The proposed approach to solving the Dubins Orienteering
Problem (DOP) leverages on the previous application of the
Self-Organizing Maps (SOMs) to the Orienteering Problem
(OP) proposed in [19], [16], [17] and SOM for the Dubins
Traveling Salesman Problem (DTSP) introduced in [13] and
later generalized for multi-vehicle missions in [14]. The pro-
posed solution can be considered as a direct combination of
the adaptation procedures for the OP and DTSP. However, the
solution has to respect the limited travel budget Tmax and
due to the strong dependence of the length of Dubins path on
the particular waypoints the conditional adaptation (introduced
in [20] and used for the Euclidean OP in [16], [14]) cannot be
directly utilized. The representation of the solution in the SOM
structure has to allow an evaluation of the budget constraint
during the unsupervised learning, and therefore, the winner
neuron is selected not as the closest neuron to the presented
location, but as the closest point of Dubins tour represented
by the current ring. This is the main source of the proposed
modifications of the existing SOM approaches for the OP and
DTSP that are described in the following parts of this section.
Here, it is worth noting that even though the overall idea of the
adaptation follows SOM for the OP and DTSP, and thus the
description of the proposed SOM for DOP can be referenced to
the previous work, a full description of the main ideas behind
the proposed learning method are presented to make the paper
self-contained.
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Fig. 2. Structure of SOM for solving orienteering problems

The basic structure of the employed SOM neural network
follows the structure of SOM for solving routing problems,
see Fig. 2. The input layer serves for presenting the particular
sensor locations towards which the prototypes are adapted. The
output layer consists of connecting neurons that are organized
into an array of output units that form a ring of nodes in
the input space R2. The employed unsupervised learning is an
iterative procedure in which the network grows by adding new
neurons that are adapted towards the presented input, e.g., as in
the early work on SOM for the TSP [21]. After each learning
epoch (i.e., presentation of all input locations to the network),
all nonwinning neurons (for the current epoch) are removed
to reduce the computational burden and improve the network
convergence [22]. The representation of the solution by the ring
is crucial to evaluate the solution cost and respect the limited
travel budget considered in orienteering problems [17].

The connected ring of nodes itself represents a path in R2

which evolves during the learning by adaptation of the winner
neurons and the respective neighboring neurons towards the
presented locations. After the network stabilization, the win-
ners fit the locations, and the ring becomes the requested tour.
Besides, the associated sensor locations to the particular win-
ners represent the final tour over the requested locations, and
thus a solution of the TSP can be retrieved after each learning
epoch by traversing the ring. In the herein addressed DOP, this
idea is further generalized and the solution represented by the
network is utilized during the winner selection and adaptation
to satisfy the budget constraint.

The important difference of the Orienteering problem (OP)
and regular TSP is that it may not be necessary (or possible)
to visit all locations in the OP and we are searching for a
subset of the locations such that it maximizes the sum of
the collected rewards R and the final tour satisfies the travel
budget Tmax. Therefore, the solution is represented as the
sequence of the associated locations to the winners obtained
by traversing the output layer. Such a tour is utilized to respect
the maximal allowed travel budget Tmax and the network is
not adapted towards the locations if such an adaptation would
result in a tour that would violate the budget Tmax [16], i.e.,
the adaptation of the network is conditioned to the expected
tour length after the adaptation. The length of the tour can be
directly computed for the Euclidean OP [16], which is not the
case of the OP with Dubins vehicle, where the Dubins tour
has to satisfy the kinematic model (1) and the tour strongly
depends on the waypoints and the headings. In DOP, we need
to determine the most suitable heading values at each waypoint
to have a short Dubins tour connecting the selected sensors,
and thus the expected headings are determined during the
winner selection similarly as in the Dubins Traveling Salesman
Problem (DTSP) [14].

The minimal turning radius ρ of Dubins vehicle is ad-
dressed by determination of the optimal Dubins maneuvers
connecting the expected waypoints to retrieve data from the
subset Sk. Therefore each neuron νi has associated one main
heading θi and up to h additional headings {θi1, . . . , θih} that
are utilized to determine the shortest Dubins path connecting
the waypoints represented by the winner neurons. Contrary to
the previous SOM-based approaches for the DTSP [13], [14]
the herein proposed SOM-based approach for DOP does not
utilize the Dubins path connecting the neurons but directly
the waypoints associated with the winners are used. It is
because we need to evaluate the length of Dubins tour over
the waypoints to meet the requirements on the travel budget
Tmax.

The number of neurons in the used growing self-organized
neural network [17] is changing during the learning, and it
corresponds to the number of the selected locations Sk ⊆ S,
but the network always has at least two neurons: the first one
for the initial location s1 and the last neuron for the final
location sn. Let the current number of neurons be m and the
ring of neurons be N = {ν1, . . . , νm}, then ν1 corresponds to
s1 and νm to sn, see visualization of Dubins tour represented
by the ring as the red curve in Fig. 3. Each neuron νi has
associated waypoint qi consisting of the vehicle heading θi

and the sensor location si. For ν1 and νm the locations are s1

and sn, respectively, because of the prescribed initial and final
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Fig. 3. Proposed selection of the possible winner neuron together with the
expected heading at the particular waypoint. The green straight line segments
denote connected ring of neurons. Each neuron has associated sensor location
s ∈ S for which the neuron has been selected as the winner neuron, a
particular heading θ, and a set of the supporting headings Θ. The showed
ring consists of the first neuron at the initial location s1, the neuron ν2 with
the associated the left most sensor visualized as the small red disk, and the last
neuron corresponding to the final location sn. The current sensor presented to
the network is s. Dubins tour represented by the current ring is shown as the
red curve, and the closest point on the curve to s is denoted by the point ps.
The point ps corresponds to the weights of possible winner neuron ν′ which
has the associated state (s, θs), where the heading θs is the heading on the
red Dubins tour at the point ps.

locations of the data collection path.

The learning of the network is performed for the fixed
number of learning epochs and for each learning epoch, all
sensor locations S are presented to the network in a random
order to avoid local optima. The important part of the proposed
adaptation is that the network is adapted to the particular s ∈ S
only if Dubins tour represented by the current ring would be
shorter than Tmax after the adaptation. Therefore, a possible
winner neuron ν′ for the presented s is determined (see Fig. 3)
and it is tried to adapt the network towards s. If the length of
Dubins tour represented by the ring after the adaptation would
be longer than Tmax there are probably too much-associated
sensors to the ring and the network is reverted to the state
prior such an adaptation and up to two neurons are removed.
After that, the adaptation of the possible winner neuron ν′ is
performed one more time and if Dubins tour represented by
the ring after the adaptation is shorter than Tmax the network
is adapted; otherwise the network is reverted to the state prior
the selection of the possible winner neuron ν′ for s. Then, the
learning continues with the next sensor.

Notice, the utilized SOM-based neural network is a bit
more complex than a traditional SOM for the TSP. It is because
each neuron νi (in addition to the neuron weights correspond-
ing to a location in R2) is also associated to the particular
sensor sνi with the heading θνi , and finally it is also associated
with a set of h supporting headings Θνi = {θνi1 , . . . , θ

νi
h }.

The headings θνi and Θνi are utilized in the determination
of Dubins tour represented by the ring during which the
most suitable heading for each particular waypoint is selected
according to the other waypoints in the sequence. Thus, such
a heading is then set as the main heading of each particular
neuron. Moreover, the additional difference of the proposed
SOM for DOP and existing SOM for the Euclidean OP [16],
[17] is in the winner selection and the adaptation because of

Dubins vehicle. For the Euclidean problem, the connected ring
of the neurons directly represents the requested data collection
path. In the proposed DOP procedure, the winner is determined
according to the Dubins tour (see Fig. 3) but the neuron
weights are adapted using the regular adaptation. The new
neuron weights ν′ are set according to the previous weights ν,
the sensor location s, and the neighboring function f(G, d) as

ν′ = ν +Rsµf(G, d)(s− ν), (3)

where µ is the learning rate (µ = 0.6), Rs is the ratio of the
reward of the sensor s and the maximal reward of the sensors
in the set S, G is the learning rate and d is the distance of
the neuron ν from the winner neuron ν∗ in the ring (i.e., in
the number of neurons in the output layer). The neighboring
function has the standard form

f(G, d) =

{
e

−d2

G2 for d in the activation bubble of ν∗
0 otherwise

,

(4)
which decreases the power of adaptation of the neighbouring
nodes to the winner neuron ν∗ with increasing distance d.
The activation bubble is determined with respect to the Dubins
tour [14] and the active neighborhood of ν∗ is defined by the
neurons νprev and νnext that are determined from the neurons
within the distance d ≤ 0.2m from ν∗, where m is the current
number of the neurons in the ring. The neurons νprev and νnext
are selected such that the length of Dubins path to visit the
waypoint at s is minimized:

Lg = L(sνprev , (s, θ)) + L((s, θ), sνnext), (5)

where θ is one of the heading values θ ∈ {θν∗}
⋃

Θν∗
of the

winner neuron ν∗ and sνprev and sνnext
are the corresponding

waypoints (sensor locations with the determined main heading)
of νprev and νnext, respectively.

Finally, the adaptation procedure not only adds new neu-
rons to the network but also removes them during the evalu-
ation of the possible adaptation. Up to two neurons (νf and
νl) can be removed if Dubins tour represented by the ring
exceeds the travel budget Tmax. νf is the neuron with the
longest distance from its associated sensor sνf , i.e., one of the
neurons that do not fully adapt to the respective waypoint yet.
νl is the neuron which is associated with the sensor location
with the lowest reward. Besides, all non-winner neurons are
removed from the ring after each learning epoch. The proposed
SOM-based unsupervised learning procedure for solving the
Dubins Orienteering Problem (DOP) is summarized in Fig. 4.

A. Computational Complexity

Due to Dubins vehicle with the kinematic model (1), the
real computational requirements of the proposed SOM-based
solution of DOP are higher than in the case of computing
just the Euclidean distance between the locations. Regarding
the computational complexity, the learning procedure depends
on the number of locations n and also on the number of
additional headings h that support finding a shorter Dubins
tour to visit the particular waypoints. The number of neurons
m never exceeds the number of sensor locations, i.e., m ≤ n,
because of removing neurons during the adaptation (Step 6(d)ii
in Fig. 4) and after each learning epoch (Step 7 in Fig. 4),
and thus the number of neurons can be bounded by n. For



B Initialization:
1) Initialize the ring N = (ν1, νend) with the neurons ν1 and νend corresponding to the sensors s1 and sn. These two

neurons are never removed nor adapted during learning. The number of supporting heading values per each neuron is
set to h, e.g., h = 3.

2) Set the learning parameters: the learning gain G = 10, the learning rate µ = 0.6, and the gain decreasing rate α = 0.1.
3) Set the current best found solution T = (s1, sn) and its sum of rewards R = 0 because r1 = rn = 0.
4) Set the learning epoch counter i to i = 1.

B Learning epoch:
5) Randomize the sensor locations S = {s1, . . . , sn} except s1 and sn; Π← permute(S \ {s1, sn}).
6) For each s ∈ Π:

B Conditional Adapt:
a) Save the current network N ′ ← N
b) (ν′, ps, θs, s)← determine a possible winner neuron ν′ for s at the location ps with the heading θs and the waypoint

location at s regarding the current ring N , and the minimal turning radius ρ, see Fig. 3.
c) N ← adapt(N , ν′, θs, s) – adapt the network N with the new winner ν′ towards s according to (5) and determine

the length of Dubins tour represented by the ring as L(N ). The new neuron ν′ is added to the network, and thus
the network grows during the adaptation.

d) If L(N ) > Tmax Then
i) N ← N ′ – Revert the changes of the adaptation and determine neurons νf and νl as the neuron with the farthest

associated sνf and the neuron with the associated sensor location with the lowest reward, respectively.
ii) N ← adapt(N \ {νf , νl}, ν′, θs, s) – adapt the ring without νf and νl and determine L(N ).

iii) If L(N ) > Tmax Then
N ← N ′ – Revert the changes to the ring and the network is not adapted towards s.

B Update (at the end of each learning epoch):
7) Remove all non-winner neurons from the ring N .
8) Update learning parameters: G← G(1− iα), i← i+ 1.
9) If the Dubins tour Twin represented by the current ring has higher sum of the collected rewards than T update the

best solution found so far T ← Twin and its sum of the collected rewards R←
∑
si∈T rsi .

10) If i < imax repeat the learning for the next learning epoch (Step 5); Otherwise: Stop the learning.

Fig. 4. A summary of the proposed SOM-based adaptation procedure of the self-organizing map for the Dubins Orienteering Problem (DOP)
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Fig. 5. Each neuron νi consists of its position in R2 as the neuron weights,
but it also has associated the main heading θi and to support finding Dubins
tour, each neuron may have up to h additional headings. The sequence of
the neurons (winners for the current epoch) provides a sequence of the
waypoints, and the neurons’ headings are utilized to construct a search graph
in which each layer corresponds to one neuron νi with the heading values
Θi = {θi, θi1, . . . , θih}. Two neighboring layers are fully connected by the
oriented edges representing the direction of the vehicle.

each learning epoch, all sensor locations S are presented to
the network, and for each location s ∈ S, a possible winner
neuron is selected. The selection of the winner is based on the
determination of Dubins tour represented by the ring which
depends on the number of heading values h associated to
each neuron and the forward search on the graph, which is
shown in Fig. 5. The complexity of the search procedure
can be bounded by O(nh2) for the worst case of n neurons
in the ring. Dubins tour represented by the ring is used for
evaluation of the budget constraint after the adaptation, which,
in the worst case, is performed two times for each presented

sensor location s to the network (Step 6c and Step 6(d)i in
Fig. 4). Thus, the computational complexity of a single winner
selection and adaptation can be bounded by O(3n2h2), and
the computational complexity of a single learning epoch can
be bounded by O(3n3h2).

IV. RESULTS

The proposed SOM-based solution of the Dubins Ori-
enteering Problem (DOP) has been evaluated using selected
problem instances of the existing standard benchmarks for the
OP [23], already utilized in the first introduction of DOP in [5].
The only known existing solver to the DOP has been proposed
in [5], and therefore, the proposed SOM-based approach is
compared with the VNS-based combinatorial optimization
approach [5], and thus this reference solution is denoted the
VNS in the rest of this paper.

The benchmarks for the OP consists of a set of problems
with particular locations and rewards accompanied with a
specific value of the travel budget Tmax [24]. The considered
benchmark problems of the Set 1, Set 2, and Set 3 proposed
by Tsiligirides [25] and diamond-shaped Set 64 and squared-
shaped Set 66 [26] are accompanied with budget values from
the range 5 to 130 which gives 89 instances of the OP. For
DOP, each instance can be further specified by the minimal
turning radius ρ, e.g., from the set ρ ∈ {0, 0.5, 1.0, 1.5}, which
can give 356 instances of DOP. Due to such an excessive



number of instances and the novelty of the proposed SOM-
based solution to DOP, it is rather preferred to focus on the
evaluation of the influence of ρ and h to the problem and
its solution. Therefore, the problem instances listed in Table I
have been selected for the presented performance evaluation.
The selected instances are for the budgets in the middle of the

TABLE I. SELECTED INSTANCES OF THE OP

Set 1 Instance with 32 locations and Tmax = 46
Set 2 Instance with 21 locations and Tmax = 30
Set 3 Instance with 33 locations and Tmax = 50
Set 64 Instance with 64 locations and Tmax = 45
Set 66 Instance with 66 locations and Tmax = 60

range of budgets for the particular problem set, which represent
the most challenging instances as for high budgets most of the
target locations can be visited, and thus the problem becomes
a variant of the DTSP. On the other hand, for small budgets,
the problem is more about picking the highest rewarding target
locations reachable within the budget.

Both evaluated algorithms, the VNS and SOM are stochas-
tic, therefore each problem instance is solved 20 times and
the reported results are average values accompanied with the
respective standard deviations, i.e., the sum of the collected
reward R and the required computational time Tcpu. Also, the
best-found solution from 20 trials is reported as Rmax for the
individual problem instances and algorithms. The parameters
of the VNS algorithm follow the results presented in [5] where
the number of heading values per each target is 16, and the
stopping criterion is the maximal number of 10 000 iterations
with the maximal 3 000 iterations without improvement. The
proposed SOM-based algorithm has only two parameters: the
number of learning epochs imax and the number of additional
supporting headings h. The number of learning epochs imax
has been experimentally set to imax = 150 and h is considered
from the set h ∈ {0, 3, 6, 9}.

The VNS and SOM based algorithms have been imple-
mented in C++ and run within the same computational environ-
ment using a single core of the iCore7 CPU running at 4 GHz.
The VNS algorithm pre-computes all the Dubins maneuvers
between all the target locations and all heading values prior
the combinatorial optimization with an optimized structure
for inserting/removing waypoints into Dubins tour. On the
other hand, SOM-based approach searches for the suitable
headings during the unsupervised learning. Dubins maneuvers
are computed on demand, and for the presented early results no
special optimizations in Dubins tour computation are utilized.

The proposed SOM-based approach has been evaluated for
the selected DOP instances together with the study of the
influence of the number of supporting headings h. The average
values with the standard deviations showed as error bars are
visualized for the selected instances in Fig. 6 and the overview
of the respective required computational times in Fig. 7. The
bar plots clearly show that increasing h improves the solution
at the cost of the increased computational burden, but the
improvement is noticeable only for h = 3 and more headings
only increase the computational burden. Thus, it seems that
a suitable choice is h = 3 for which detailed results are
presented in Table II. Selected solutions found by the proposed
SOM are shown in Fig. 10.
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Fig. 6. Solution quality as an average sum of the collected rewards for
VNS [5] and the proposed SOM according to the number of the headings h
in problems with ρ = 1
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Fig. 7. Average required computational time for VNS [5] and the proposed
SOM according to the number of the headings h in problems with ρ = 1

TABLE II. RESULTS FOR THE DUBINS ORIENTEERING PROBLEM

Problem instance VNS (16 headings) [5] SOM (h = 3)
(Tmax, ρ) Rmax R Tcpu [s] Rmax R Tcpu [s]

Set 1 (46, 0.5) 175 168 11.0 170 168 5.1

Set 1 (46, 1.0) 165 158 11.3 160 153 6.3

Set 1 (46, 1.5) 140 135 10.2 140 126 5.0

Set 2 (30, 0.5) 255 252 4.4 255 249 2.3

Set 2 (30, 1.0) 230 230 4.8 240 221 2.9

Set 2 (30, 1.5) 210 210 3.6 195 181 2.2

Set 3 (50, 0.5) 510 508 14.1 510 492 6.1

Set 3 (50, 1.0) 470 470 13.6 480 464 6.8

Set 3 (50, 1.5) 440 430 12.4 440 403 6.1

Set 64 (45, 0.5) 792 778 61.2 744 697 24.5

Set 64 (45, 1.0) 702 684 59.6 540 513 19.9

Set 64 (45, 1.5) 636 603 55.3 456 413 14.5

Set 66 (60, 0.5) 895 850 63.2 860 814 22.9

Set 66 (60, 1.0) 890 846 71.9 835 790 22.2

Set 66 (60, 1.5) 795 722 61.5 765 698 18.0

The results in Table II indicates that for the instances
of the Set 1, Set 2, and Set 3 the proposed SOM provides
competitive results regarding the best-found solution among
the performed trials. In the case of the Set 64 and Set
66, with the locations positioned in a grid, the VNS-based
approach provides better results with about 2–3 times higher
computational requirements.



A. Discussion

The presented results support the feasibility of the proposed
SOM-based approach to solve computationally challenging
instances of DOP. Although the combinatorial optimization
VNS-based approach provides overall better results than the
proposed SOM approach, the main advantage of the proposed
unsupervised learning is the ability to solve the problem
with very few supporting headings h, which results in lower
computational requirements. Even though the early results
have been achieved by non-optimized implementation of the
Dubins tour computation during the learning (contrary to the
precomputed structure in the case of VNS [5]), the SOM-based
approach is less computationally demanding for h = 3.

(a) VNS, R=230, L = 28.43 (b) SOM, R=240, L = 29.65

Fig. 8. Best solutions for the Set 2 problem instance with Tmax = 30 and
ρ = 1.0 found by the VNS [5] and the proposed SOM-based approach. The
L denotes the length of the found Dubins tour. The VNS approach found the
solution in Tcpu = 4.8 sec while the proposed SOM-based approach found
the solution in Tcpu = 2.9 sec using the same computational environment.

On the other hand, the simple local improvements utilized
in the proposed conditional adaptation (i.e., the deletion of
the νf and νl neurons) provide only limited capability of
improving the solution and a more systematic search in the
VNS provides better results at the cost of higher computational
requirements. Therefore, it is expected that additional local
improvements combined with the memetic algorithm would
improve the solution similarly as in [27] for the Euclidean
TSP, while preserving the benefit of the SOM approach with
only a few supporting heading values. Note that for Set 2 and
Set 3 the best-found solutions for ρ = 1 have been found by the
SOM approach with h = 3 while the VNS with 16 headings
per waypoint provides a bit worse solution, e.g., see Fig. 8
and Fig. 9. In these cases, the VNS stucks in local optima and
all performed trials the solutions are identical. The proposed
SOM-based approach provides better results in few trials for
the instance of Set 2, and for Set 3 the solution with the highest
reward R = 480 is found in 8 of 20 trials. Individual solutions
are slightly different, but the sum of the collected rewards is
the same R = 480. Even though these examples are the only
case when SOM provides better results than the VNS approach,
this behavior indicates the SOM-based approach is capable of
finding good solutions with lower computational requirements.

V. CONCLUSION

In this paper, a novel SOM-based adaptation procedure is
proposed to solve the Dubins orienteering problem. The pro-

(a) VNS, R=470, L = 49.74 (b) SOM, R=480, L = 48.53

Fig. 9. Best solutions for the Set 3 problem instance with Tmax = 50 and
ρ = 1.0 found by the VNS [5] and the proposed SOM-based approach. The
L denotes the length of the found Dubins tour. The VNS approach found the
solution in Tcpu = 12.1 sec while the proposed SOM-based approach found
the solution in Tcpu = 6.7 sec using the same computational environment.

posed approach leverages on the SOM adaptation procedures
for the Euclidean OP and DTSP, and the presented results
support the feasibility of the proposed idea. The developed
learning procedure provides competitive results with the exist-
ing VNS solution of DOP in problems with relatively sparse
target locations, but it provides worse results in instances of
the Set 64 and Set 66 problem sets where the target locations
are placed in a grid. It is because of relatively simple local
rules for removing neurons and the visited locations during
the learning to meet the requirements on the travel budget.
On the other hand, the SOM-based approach is less compu-
tationally demanding than the VNS albeit Dubins maneuvers
are repeatedly computed during the learning. The presented
results support the proposed approach is viable, and the further
research aims to address the identified drawbacks of the SOM-
based approach by a more sophisticated structure to speed
up the computation of Dubins tour represented by the ring.
Besides, a combination of several local improvement strategies
and combination with the memetic algorithm are subjects of
the future work.
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