
Autoencoders Covering Space As A Life-Long
Classifier

Rudolf Szadkowski, Jan Drchal, and Jan Faigl

Department of Computer Science, Faculty of Electrical Engineering
Czech Technical University in Prague

Technick 2, 166 27, Prague 6, Czech Republic
{szadkrud,drchajan,faiglj}@fel.cvut.cz,

WWW home page: https://comrob.fel.cvut.cz/

Abstract. A life-long classifier that learns incrementally has many chal-
lenges such as concept drift, when the class changes in time, and catas-
trophic forgetting when the earlier learned knowledge is lost. Many suc-
cessful connectionist solutions are based on an idea that new data are
learned only in a part of a network that is relevant to the new data. We
leverage this idea and propose a novel method for learning an ensem-
ble of specialized autoencoders. We interpret autoencoders as manifolds
that can be trained to contain or exclude given points from the input
space. This manifold manipulation allows us to implement a classifier
that can suppress catastrophic forgetting and adapt to concept drift.
The proposed algorithm is evaluated on an incremental version of the
XOR problem and on an incremental version of the MNIST classifica-
tion where we achieved 0.9 accuracy which is a significant improvement
over the previously published results.

Keywords: incremental learning, life-long learning, auto-encoder, catas-
trophic forgetting, concept drift

1 Introduction

Incremental learning is important for domains where the incoming data must be
continually integrated into a classifier. Such classifier is expected to train and
predict the incoming data as long as it is in operation; hence, a life-long classifier.
In a life-long time scale, we expect that the target classes can change in time,
where such change is called a concept drift. Moreover, there is also a problem of
catastrophic forgetting: as the classifier is continually trained it can forget some
knowledge it learned earlier. Both the concept drift and catastrophic forgetting
are the main challenges of incremental learning [1].

In neural networks, concept representations are distributed throughout the
network weights [2]. In such distributed representations, during each training
iteration, a slight change of a single parameter can lead to changes in multiple
concepts at once. During life-long learning, these changes can accumulate, and
concepts might get forgotten [1]. The existing approaches to the concept drift in

2 Rudolf Szadkowski et al.

neural networks are based on preferring updates only a part of the network that
is relevant to the new data increments [3,4]. Probably, the most straightforward
implementation of this idea is to use an ensemble of predictors [5].

Our proposed method is based on an ensemble of classifying autoencoders.
An autoencoder is a neural network trained to approximate an identity trans-
formation of the input. Training of the autoencoder is unsupervised because the
loss, also called the reconstruction error, is defined as a difference between the
input and its transformed image. This reconstruction error of the autoencoder
has an alternative in anomaly detection. An anomalous input is detected by the
autoencoder when the reconstruction error exceeds a given threshold [6,7]. A re-
lated application of the same method is the novel class detection [8,9] where the
task is to detect unknown classes. In both applications, the anomaly and novel
class detection, the autoencoder divides the input space into two regions accord-
ing to the reconstruction error. Here, we call the region with low reconstruction
error θ-wrap, where θ represents the maximum reconstruction error threshold.
Hence, each θ-wrap can be understood as a manifold which covers most of the
samples on which the corresponding autoencoder was trained.

In this paper, we take advantage of θ-wrap interpretation of the autoencoder
and present an incremental supervised training algorithm that suppresses the
catastrophic forgetting and adapts the classifier to concept drift. The classifier
is implemented as an autoencoder ensemble, where each autoencoder is trained
to cover its respective class by a θ-wrap. We present two methods to train θ-
wrap that are refered cover and uncover. The methods train the θ-wrap
to cover or uncover the given set of points while suppressing the catastrophic
forgetting. The uncover method is used for the case of the concept drift when
a class starts intersecting with θ-wrap unrelated to that class. The conflicting
θ-wrap is then trained to uncover the intersection with the uncover method.
Both uncover and cover methods are the building blocks for the incremental
training algorithm for the whole autoencoder ensemble. For each given sample
batch, the algorithm uncovers given samples by θ-wraps to which the samples
do not belong, and then it covers the samples by their respective θ-wrap.

The proposed algorithm is designed under relaxing assumptions where classes
are “crisp” manifolds that are sampled without noise and uncover and cover
methods always work perfectly. We examine the robustness of the proposed al-
gorithm in two dimensions, incrementally learning the XOR dataset in which we
simulate the concept drift. We also test how the ensemble of classifying autoen-
coders withstand incremental training on the MNIST dataset.

2 Related Work
Autoencoder ensembles have been employed for detecting outliers or anoma-
lies [10, 11] where all autoencoders are trained to classify the same task, but
each autoencoder is trained to its specific task [12]. As a new task appears,
the algorithm builds a new autoencoder on this task in order to capture and
store its representative information. This storage helps the proposed algorithm
to suppress the catastrophic forgetting that is enforced structurally, where the
concepts are stored in their subnetworks, and thus the new concept does not

Autoencoders Covering Space As A Life-Long Classifier 3

influence the previous ones. This structural solution to catastrophic forgetting
is also used in our proposed algorithm. We additionally introduce a resampling
algorithm that suppresses catastrophic forgetting within each subnetwork. The
structural separations of concepts are not the only solution to catastrophic for-
getting. Recently proposed Elastic Weight Consolidation (EWC) algorithm [3]
selectively freezes the neural network weights that are important to the previ-
ously learned task/class. The EWC is compared to other approaches tackling
the catastrophic forgetting in [13], where the authors report the EWC provides
the best results. However, neither the algorithm [12] nor [3] can successfully deal
with the concept drift problem where classes change in time. In particular, when
a class is suddenly relabeled. In such a case, a classifier needs to implement a
forgetting mechanism. We present such a mechanism in the following section.

3 Analysis
Let X = (0, 1)N be the N -dimensional input space and let Ci ⊂ X be the i-th
class, where i ∈ {1 . . .M}. We assume that classes Ci form mutually disjoint
manifolds. The manifold Ci is unknown, but at the time t, we get a finite point-
set of class-samples St

i ⊂ Ci. We can only work with the given class-samples St
i

at the time t and, moreover, any class Ci can change at the time (Ct
i 6= Ct′

i) due
to the concept drift. We aim to find such a classifier F t : X → {1 . . .M} at t
that

∀i ∈ {1 . . .M},∀x ∈ Ct
i : F t(x) = i. (1)

We propose to use M trainable manifolds Pi(θ) ⊂ X, which we call θ-wraps,
to mimic their respective classes. Ideally, each class Ci is wrapped by its respec-
tive θ-wrap Pi(θ), while all wraps are mutually disjoint:

∀i ∈ {1 . . .M} : Ci ⊂ Pi(θ), (2)

∀i, j ∈ {1 . . .M}, i 6= j : Pi(θ) ∩ Pj(θ) = ∅. (3)

We propose the following straightforward algorithm to reach this desired state.
At each iteration t, the given class-sample set St

i ⊂ Ct
i is firstly uncovered by

all θ-wraps P t
j (θ); j 6= i and then covered by P t

i (θ) θ-wrap (see Alg. 2). After
the training, we say P covers S and P uncovers S that means S ⊂ P and
P ∩ S = ∅, respectively. The classification can be then realized by the function
F (x) = arg max

i
[[x ∈ Pi(θ)]]. The proposed implementation of θ-wrap Pi(θ) and

its training algorithm follows.

4 Method

We propose to implement θ-wraps with autoencoders, where θ-wrap Pi(θ) is
defined by its underlying autoencoder gi : X → X. An autoencoder is usually
trained to reconstruct some target subset A ⊂ X, i.e., ∀a ∈ A : g∗i (a) = a.
The reconstruction error is measured by the Euclidean distance L(x, g(x)) =
||x− g(x)||. θ-wrap corresponding to the i-th autoencoder is defined as Pi(θ) =

4 Rudolf Szadkowski et al.

Algorithm 1 Train autoencoder with positive and negative samples.

Variables g: autoencoder; S+, S−: positive and negative samples; θ: threshold;
E: max epoch; J : cost function;
Result g: updated autoencoder;

1: function train(g, S+, S−, θ)
2: g0 ← g
3: for e = 1 to E do
4: Se

− ← {s|L(s, ge−1(s)) ≤ θ; s ∈ S−} . Filters S− points with low L.
5: Se

+ ← {s|L(s, ge−1(s)) ≥ θ; s ∈ S+} . Filters S+ points with high L.
6: εe ← J (ge−1, Se

+, S
e
−)

7: ge ← gradient-descent(ge−1, εe)
8: if ∀s ∈ S+ : L(s, ge(s)) < θ and ∀s ∈ S− : L(s, ge(s)) > θ then
9: break

10: end if
11: end for
12: g ← ge

13: end function

{x|L(x, gi(x)) < θ, ∀x ∈ X}, i.e., it is a manifold where all distances between
points x and images gi(x) are smaller than some threshold θ ∈ (0,Lmax) where
Lmax is the maximal reachable distance from the middle of the (0, 1)N space

Lmax = min
x

sup
y
L(x,y) =

√
N/2;x,y ∈ (0, 1)N . (4)

θ-wrap Pi(θ) is trained by training the related autoencoder gi using the
function train(gi, S+, S−) depicted in Alg. 1, where the finite sets S+, S− ⊂ X
are called the positive and negative samples, respectively. Ideally, the positive
samples should reside inside θ-wrap Pi(θ) while the negative samples should be
outside:

gti ← train(gt−1i , St
+, S

t
−, θ), (5)

where for samples St
+, St

−, and i-th θ-wrap P t
i (θ) it holds that

(St
+ ⊂ P t

i (θ)) ∧ (St
− ∩ P t

i (θ)) = ∅, (6)

and where t is the iteration index. The cost function J (g, S+, S−) ∈ R+ in Alg. 1
gives the cost of the autoencoder g w.r.t. the positive and negative sets S+, S−

J (g, S+, S−) =
1

|S+|
∑
s∈S+

L(s, g(s))2 +
1

|S−|
∑
s∈S−

(Lmax − L(s, g(s))2. (7)

The class is then predicted by

F (x) = arg min
i
L(x, gi(x)). (8)

Let samp(gi) be a function that gives a set of random wrap-samples: it creates
a set X̂i of uniform random samples of X, and keeps only those that are in θ-
wrap, samp(gi) = {s|L(s, gi(s)) < θ, s ∈ X̂i}, where |X̂i| = Smax. Ideally,

Autoencoders Covering Space As A Life-Long Classifier 5

to satisfy the properties (2) and (3), it would be sufficient to set ∀i : g∗i ←
train(gti , Si, P̂

t
i , θ), where Si, P̂

t
i are large enough finite point-sets sampled from

Ci and ∪j 6=isamp(gj), respectively. However, in our case, the class-sample set
St
i ⊂ Ci can contain just a few samples (one being the worst case scenario). If the

class-sample set St
i does not represent its class Ci well (e.g., it contains just one

sample) the catastrophic forgetting may take place. In the context of θ-wraps,
the catastrophic forgetting is an event when after training θ-wrap P t−1

i (θ), new
θ-wrap P t

i (θ) ceases to cover a part of Ci that was covered by its predecessor,
i.e., (Ci ∩ P t−1

i (θ)) 6⊂ P t
i (θ). θ-wrap P t−1

i (θ) is not preserved by Alg. 1 because
the gradient descent method optimizes the cost that is calculated only from
the given samples St

−, S
t
+ at the time t. We propose to address the problem by

adding wrap-samples samp(gt−1) to the positive samples and define the method
gti ← cover(gt−1i , St

i , θ) as

cover(gt−1i , St
i , θ) := train(gt−1i , St

i ∪ samp(gt−1i),
⋃
j 6=i

samp(gt−1j), θ). (9)

As discussed above, the algorithm needs to implement a forgetting mechanism
to deal with the concept drift. An abrupt concept drift of class Ci is a discrete
event when a class abruptly changes Ct

i 6= Ct−1
i [13]. The class change that

hurts the performance of the classifier happens when Ct
i intersects with θ-wrap

of other class P t−1
j (θ), j 6= i. To keep the properties (2) and (3), the θ-wrap

P t−1
j (θ) must first uncover the intersection P t−1

j (θ) ∩ Ct
i ; j 6= i before the θ-

wrap P t−1
i (θ) covers this intersection. Let class-sample set Ŝt

i be a subset of

such conflicting intersection P t−1
j (θ) ∩ Ct

i ; j 6= i, then, before we cover Ŝt
i with

P t
i (θ) using (9) we must train P t

j (θ) to uncover Ŝt
i . We define the method gtj ←

uncover(gt−1j , Ŝt
i , θ), that trains gj to uncover Ŝt

i , as

uncover(gt−1j , Ŝt
i , θ) := train(gt−1j , samp(gt−1j)− B(Ŝt

i , ε),⋃
k 6=j

samp(gt−1k) ∪ Ŝt
i , θ),

(10)

Algorithm 2 Update autoencoders with the labeled samples D.

Variables {gi}: collection of M autoencoders, i ∈ {1 . . .M};
D = {(s, k)}: set of labeled samples where k indicates class of sample s;
θ: threshold; L: metric function;
Result {gi}: updated autoencoders;

1: function update({gi}, D, θ)
2: for i = 1 to M do
3: Si ← {s|k = i; (s, k) ∈ D}
4: for j = 1 to M where j 6= i and ∃s ∈ Si : L(s, gj(s)) < θ do
5: gj ← uncover(gj , Si, θ) . See (10).
6: end for
7: gi ← cover(gi, Si, θ) . See (9).
8: end for
9: end function

6 Rudolf Szadkowski et al.

where B(Ŝt
i , ε) =

⋃
s∈Ŝt

i
{x|L(s,x) < ε;x ∈ X} is ε-neighbourhood of the whole

set Ŝt
i . With cost function (7), sample set covering (9), and uncovering (10)

Alg. 1 and Alg. 2 are completely defined.

5 Results

The proposed approach has been empirically evaluated on two datasets. First, in
Sec. 5.1 we study how the algorithm handles both the catastrophic forgetting and
concept drift in the simple XOR problem. Then, in Sec. 5.2 we deploy the method
in MNIST dataset [14], where the proposed approach demonstrates surprising
benefits of the ensemble of almost-independent autoencoders. The utilized au-
toencoder is composed of four hidden ReLU layers with the sizes 800, 400, 400,
and 800. The input and output layers have N units each where the output layer
is composed of sigmoid units. The autoencoder is overcomplete for experiments
in Sec. 5.1, but cost (7) prevents the autoencoder to become an identity func-
tion. ADAM with default parameters [15] is utilized as the gradient-descent

method in Alg. 1. The subtraction parameter from (10) is set to ε = 0.01. All
hyperparameters were selected empirically.

5.1 Incremental Training of Binary Classification

The principle of the proposed method listed in Alg. 2 is demonstrated in three
classification scenarios where two autoencoders are trained to classify classes
C1, C2 ⊂ (0, 1)2. The input space dimension is N = 2, training hyperparameters
are set to θ = Lmax/2, and the maximum number of epochs E = 1000. The
two classes C1, C2 are composed of squares A1, A2, A3, B1, and B2

1 depicted in
Fig. 1a. Each scenario starts with C1 = A1 covered by P1(θ) and C2 = B1 covered

0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

B1

B2A1

A2

A3

(a)

0.2 0.4 0.6 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

B1

A1

(b)

Fig. 1. (a) Squares used in the classification scenarios. Green squares are part of C1

and orange squares are part of C2, where A3 ⊂ B1. (b) Initially, the classifier is learned
only on A1 and B1 squares. A1 is covered by P1(θ) (blue) and B1 is covered by P2(θ)
(red). θ-wraps are visualized by taking samples from θ-wrap.

1 The centers of 0.1 × 0.1 large squares A1, A2, B1, and B2 are (0.3,0.7), (0.7,0.3),
(0.3,0.3), and (0.7,0.7), respectively. A3 is 0.02× 0.02 large centered at (0.3,0.3).

Autoencoders Covering Space As A Life-Long Classifier 7

by P2(θ) (see Fig. 1b). The cat-forget scenario demonstrates the catastrophic
forgetting where the classes are extended to C1 = A1 ∪ A2 and C2 = B1 ∪ B2.
The class-sample batches Dt of size 100 are sampled only from A2 ∪ B2 which
can result into “forgetting” the boxes A1 and B1. We set the number of the
maximum wrap-samples Smax = 0 to demonstrate the catastrophic forgetting.
The no-forget scenario has the same setting except Smax = 5000. The differ-
ence between the scenarios can be seen in Fig. 2a and Fig. 2b. Finally, in the
concept-drift scenario, the new classes are C1 = A1 ∪ A3 and C2 = B1 − A3

to study how the method handles the concept drift. The class-sample batches
Dt are of the size one, and they are sampled only from A3, and thus P1 tries
to cover each class-sample while P2 tries to uncover it, see Fig. 2c. Results of
the statistical evaluation are listed in Tab. 1. Accuracies were averaged from five
10-iteration long runs and evaluated on classes C1 = A1∪A2 and C2 = B1∪B2,
except for concept-drift which was evaluated on C1 = A3 and C2 = B1−A3.

Table 1. Classifier evaluation on XOR test data (new samples taken from respective
classes). Accuracy averages taken from 5 runs, with standard deviation to show the
algorithm stability.

Scenario cat-forget no-forget concept-drift

accuracy 0.62± 0.11 0.94± 0.09 0.78± 0.09

5.2 Catastrophic Forgetting Evaluation on MNIST

In the second scenario, we perform the evaluation introduced in [13] which
measures the classifier performance on the incremental learning of the MNIST
dataset. The dataset D is divided into Deven and Dodd containing even and odd
number characters, respectively. The algorithm trains on Deven first and then
on Dodd (with no access to Deven). During the training, the overall accuracy on
the test set is measured. Each class-sample of MNIST dataset corresponds to a
point in [0, 1]784 space which is scaled to [0.15, 0.85]784 space to avoid plateaus
during training sigmoid output units. The training hyperparameters are set to
θ = Lmax/10, and the maximal epoch number E = 1000. The maximum wrap-
samples size is Smax = 0 because the sampling method is not suitable for such a
high-dimensional input, and thus there is no mechanism preventing catastrophic
forgetting except for the fact that the autoencoders train almost independently
on each other (see Alg. 2). There are M = 10 autoencoders training in their
respective classes. Each iteration, we sample a random batch of the size 100
from the current dataset D. For the first T1 = 300 iterations, only the odd num-
bers Dodd are trained, and the next T2 = 300 iterations, only the even numbers
Deven are trained. Here, we differ from [13] where the training parameters are
T1 = T2 = 2500, and thus the algorithms are exposed to catastrophic forgetting
for more iterations. However, it depends whether one iteration is equivalent to
one parametric update because our algorithm performed 66.82 updates per iter-
ation on average (calculated from six independent runs). Therefore about 40 092
updates are performed in the total, and thus the proposed algorithm withstands

8 Rudolf Szadkowski et al.

0.25 0.50 0.75

0.25

0.5

0.75

B1

B2A1

A2

t = 1

0.25 0.50 0.75

B1

B2A1

A2

t = 4

0.25 0.50 0.75

B1

B2A1

A2

t = 8

0.25 0.50 0.75

B1

B2A1

A2

t = 10

(a) cat-forget scenario

0.25 0.50 0.75

0.25

0.5

0.75

B1

B2A1

A2

0.25 0.50 0.75

B1

B2A1

A2

0.25 0.50 0.75

B1

B2A1

A2

0.25 0.50 0.75

B1

B2A1

A2

(b) no-forget scenario

0.25 0.30 0.35

0.25

0.3

0.35 B1

A3

0.25 0.30 0.35

B1

A3

0.25 0.30 0.35

B1

A3

0.25 0.30 0.35

B1

A3

(c) concept-drift scenario

Fig. 2. Cover evolution in catastrophic forgetting, normal and concept drift scenarios.
Initially (for t = 0), P1(θ) (blue) and P2(θ) (red) cover A1 and B1, respectively, see
Fig. 1b. In (a) and (b), the goal is to cover A2 and B2 without uncovering A1 and
B1. We train on batches containing 100 class-samples of A2, B2. (a) Smax is zero which
leads to uncovered A1 and B1 being part of the both θ-wraps. (b) Smax = 5000 and
both θ-wraps managed to keep their respective squares A1, B1 covered. (c) A concept
drift happened when the new classes became C1 = A1 ∪A3 and C2 = B1−A3. We can
see the detail of A3 (green rectangle) which we want to uncover by P2(θ) and cover
by P1(θ). We train on batches containing one class-sample taken from A3. During ten
iterations, P2(θ) (red) formed a cavity which is covered by P1(θ) at t = 10. Both
θ-wraps are visualized with thick border and interior filled with sparse markers.

the catastrophic forgetting for even more updates than, e.g., EWC [3] with one
update per iteration and thus updated just 5000 times. An example of the ac-
curacy evolution is shown in Fig. 3.

The achieved accuracy on the MNIST testing dataset for six experimental
runs of 600 iterations is 0.90 ± 0.02. For a rough comparison with existing ap-
proaches, the best result reported in [13] on even-odd numbers learning task is
the accuracy 0.64, which was achieved using the EWC algorithm [3].

Autoencoders Covering Space As A Life-Long Classifier 9

0 100 200 300

0.00

0.25

0.50

0.75

1.00
a
cc

u
ra

cy

training on Deven

400 500 600

training on Dodd

Deven ∪Dodd

Deven

Dodd

iterations

Fig. 3. Evolution of the accuracy during training on the MNIST dataset with even
Deven and odd Dodd numbers. For each iteration, 100 random class-samples is taken
from either Deven or Dodd and trained. On average, the update function processes
59.87 epochs at each iteration of Alg. 2.

5.3 Discussion

The idealized property (3) does not perfectly hold as can be seen in Fig. 2,
where θ-wraps intersects for no-forget and concept-drift scenarios. The
intersection is caused by train method (Alg. 1) which does not always ensure the
property (6), where the positive samples should reside inside while the negative
samples outside of the trained θ-wrap. θ-wrap then loses some positive samples or
keeps covered some negative samples which can lead to intersections with other
θ-wraps. However, these intersections seem to become smaller with increasing
iterations, hinting the robustness of the proposed algorithm.

The bottleneck of the proposed algorithm is the samp method, which does not
scale well with the increasing dimensionality2. For our future work, we aim to ex-
plore possibilities on how to implement samp method more efficiently. However,
high-dimensionality might be the reason why the proposed classifier has sur-
prisingly good results. Most images in MNIST have high contrast, and thus the
samples are clustered close to the corners of the 784-dimensional unit hypercube.
These clusters are covered by autoencoders with θ-wraps, i.e., manifolds of the
Euclidean space. Euclidean distances between corners of the high-dimensional
hypercube can be quite large (the maximum is

√
784 = 28), θ-wraps are probably

less likely to reach across such distances and cover other classes.

6 Conclusion

In this paper, we provide an analysis of the properties of classifying autoen-
coders in the context of the concept drift and catastrophic forgetting, where
the autoencoders are represented as trainable manifolds called θ-wraps. With
the θ-wrap representation and classes defined as subspaces of the input space,
we describe the training, catastrophic forgetting, and concept drift using set
operations. This allows us to design an algorithm that trains the ensemble of

2 It is apparent from Sec. 5.2, as sampling a point that lies in θ-wrap is roughly
equivalent to getting an actual image of digit by randomly sampling 28× 28 pixels.

10 Rudolf Szadkowski et al.

autoencoders to incrementally cover their respective classes with their respective
θ-wraps. Even though the algorithm is designed under relaxing assumptions, the
results support its feasibility and relatively robustness for two-dimensional input
space, and the proposed approach produces competitive results on incremental
learning of the MNIST dataset.

Acknowledgments – This work was supported by the Czech Science Foun-
dation (GAČR) under research project No. 18-18858S.

References

1. A. Gepperth and B. Hammer, “Incremental learning algorithms and applications,”
in European Symposium on Artificial Neural Networks (ESANN), 2016, pp. 357–
368.

2. G. E. Hinton, J. L. McClelland, and D. E. Rumelhart, Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations. Cam-
bridge, MA, USA: MIT Press, 1986, ch. Distributed Representations, pp. 77–109.

3. J. Kirkpatrick and et. al, “Overcoming catastrophic forgetting in neural networks,”
Proceedings of the National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526,
2017.

4. Z. Li and D. Hoiem, “Learning without forgetting,” CoRR, vol. abs/1606.09282,
2016.

5. B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak, “Ensemble
learning for data stream analysis: A survey,” Information Fusion, vol. 37, pp. 132–
156, 2017.

6. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58, 2009.

7. A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, “Anomaly
detection using autoencoders in high performance computing systems,” CoRR,
vol. abs/1811.05269, 2018.

8. E. Marchi, F. Vesperini, S. Squartini, and B. Schuller, “Deep recurrent neural
network-based autoencoders for acoustic novelty detection,” Computational Intel-
ligence and Neuroscience, vol. 2017, 2017.

9. A. M. Mustafa, G. Ayoade, K. Al-Naami, L. Khan, K. W. Hamlen, B. Thuraising-
ham, and F. Araujo, “Unsupervised deep embedding for novel class detection over
data stream,” in IEEE International Conference on Big Data, 2017, pp. 1830–1839.

10. J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier detection with autoen-
coder ensembles,” in SIAM International Conference on Data Mining, 2017, pp.
90–98.

11. Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an ensemble of
autoencoders for online network intrusion detection,” CoRR, vol. abs/1802.09089,
2018.

12. A. R. Triki, R. Aljundi, M. B. Blaschko, and T. Tuytelaars, “Encoder based lifelong
learning,” CoRR, vol. abs/1704.01920, 2017.

13. B. Pflb, A. Gepperth, S. Abdullah, and A. Kilian, “Catastrophic forgetting: Still
a problem for dnns,” in International Conference on Artificial Neural Networks
(ICANN), 2018, pp. 487–497.

14. Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010, cited on
2019-29-01. [Online]. Available: http://yann.lecun.com/exdb/mnist/

15. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014.

