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Abstract. In this paper, we report early results on the deployment
of the growing neural gas algorithm in online incremental learning of
traversability assessment with a multi-legged walking robot. The ad-
dressed problem is to incrementally build a model of the robot expe-
rience with traversing the terrain that can be immediately utilized in
the traversability cost assessment of seen but not yet visited areas. The
main motivation of the studied deployment is to improve the performance
of the autonomous mission by avoiding hard to traverse areas and sup-
port planning cost-efficient paths based on the continuously collected
measurements characterizing the operational environment. We propose
to employ the growing neural gas algorithm to incrementally build a
model of the terrain characterization from exteroceptive features that
are associated with the proprioceptive based estimation of the traversal
cost. Based on the reported results, the proposed deployment provides
competitive results to the existing approach based on the Incremental
Gaussian Mixture Network.
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1 Introduction

The problem studied in this paper is arising from robotic data collection missions
where an autonomous robot is requested to repeatably visit a set of locations
to measure some phenomena of interest [3]. During such a mission, the robot
not only collects the requested data measurements, but it also experiences the
terrain. Hence, the experience can be exploited in finding more efficient paths
through the environment, and thus improve the mission performance. This might
be especially suitable for multi-legged robots that can traverse rough terrains [1],
but they suffer from low stability and high energy requirements when traversing
difficult terrains [6]. Therefore, we aim to incrementally learn a model of the
traversability assessment that can be instantly utilized in the evaluation of the
seen but not yet visited areas, to support planning cost-efficient paths. Our
motivational deployment is visualized in Fig. 1.
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Fig. 1. Example of the traversability assessment model used in path planning for
a hexapod walking robot. The gray areas are parts of the operational environment
mapped so far, and the traversability cost is visualized by the respective color of the
areas, where hard to traverse parts are in red and low-cost parts are in blue.

Existing approaches to terrain characterization can be categorized into ter-
rain classification and traversability assessment using a continuous function. The
traversability assessment for path planning is of our particular interest; however,
we consider assessment only of passable terrains, and thus we rely on prior binary
classification to traversable and untraversable areas. The estimation of the mo-
tion cost can be based on locally observed properties [14] and modeling of such a
spatial phenomenon can be performed by the Gaussian Process (GP) based re-
gression, e.g., to create continuous occupancy [9] or elevation maps [16]. However,
GPs are computationally demanding to be directly utilized in online decision-
making and incremental model learning. Therefore, in our previous work [12],
we employed the Incremental Gaussian Mixture Network Model (IGMN) [10] to
learn a cost of transport model that is then utilized in the cost prediction using
exteroceptive sensing of robot surroundings.

Although the IGMN provides a satisfiable performance in the cost estima-
tion suitable for path planning [12, 13], we aim to explore other possibilities to
combine terrain classification with terrain traversability learning in a computa-
tionally efficient way. Motivated by recent advancements in the application of
the Growing Neural Gas (GNG) algorithms in online labeling [2], time series
classification [8], online anomaly detection [15] using motion and appearance
features [17] and clustering data streams [5], we tackled the studied problem
using the original GNG algorithm [4] proposed by Bernd Fritzke in 1994. The
only modification is in adding a new node if the current winning unit is not close
enough [11] instead of growing every fixed number of adaptations.

In the rest of the paper, we specify the problem context and report on our
early evaluation results and comparison of the GNG with the IGMN.

2 Problem Specification

The studied problem is to estimate the traversal cost based on the experience
of the robot with terrain traversing. The considered terrain characterization
is a combination of exteroceptive signals, which allows predicting the cost from
range measurements, with proprioceptive measurements characterizing the robot
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experience with the terrain. The robot operational environment is modeled as
the 2.5D elevation map to store the elevation and RGB color information that is
utilized to compute the exteroceptive part of the terrain descriptor. In particular,
we utilize a terrain feature descriptor that consists of three shape features [7]
and two appearance features. The shape features s1, s2, and s3 are defined as

s1 =
λ1
λ3
, s2 =

λ2 − λ1
λ3

, s3 =
λ3 − λ2
λ3

, (1)

where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the covariance matrix of the elevation
in a particular area of interest. The appearance part of the descriptor consists of
the ab channel means of Lab color space denoted a1 and a2. Finally, the traversal
cost is characterized by the experienced stability cost c determined as the square
root of the robot roll variance for 10 s period measured by the onboard attitude
heading reference system running at 400 Hz. The model descriptor is thus six
dimensional vector d = (s1, s2, s3, a1, a2, c) and the traversability assessment is
based on the model inference to predict c using dsa = (s1, s2, s3, a1, a2).

During the mission, the robot builds a map of its surroundings, traverse the
terrain, and its experience with the terrain can be represented as a sequence of n
descriptors that is further called trail T , i.e., T = (d(1), . . . ,d(n)). Every single
descriptor d(k) is utilized to incrementally update the model M(k)

M(k)← learn(M(k − 1),d(k)) (2)

that can be immediately used to assess a set of descriptors characterizing seen but
not yet visited areas, e.g., organized in a grid map, G = {(xi, yj ,dsa(i, j)) | 1 ≤
i ≤ w, 1 ≤ j ≤ h}, where xi and yj are the spatial coordinates of the correspond-
ing exteroceptive measurements dsa(i, j) for the w×h large grid map. Since the
measurements might not be available for every cell of the map, the number of
descriptors m = |G| can be m ≤ w · h.

The evaluation of the learned model and its generalization to other environ-
ments can be based on measuring the difference between the predicted values
of c for the grid map G and the ground truth values. However, it is nearly im-
possible to establish the ground truth, because it would require a precise and
complete traversing of all areas of the particular environment, but most impor-
tantly the measured experience depends on many factors, and it is generally a
random variable. Therefore, we consider a reference value of the predicted cost
determined by the computationally demanding GPs using the whole particular
trail T denoted as MT

GP. For each k-th descriptor of the trail, M(k) is used to
assess G, and we measure the performance of the incrementally learned model as
the evolution of the root-mean-square error (RMSE) to the GP-based predictor

RMSE(k) =

√√√√√ ∑
dsa∈G

(
predict(M(k),dsa)− predict(MT

GP,dsa)
)2

m
. (3)

The model inference provides a prediction of the traversal cost as a continuous
variable, and its particular value depends on many factors. Therefore, models
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learned by different techniques would unlikely provide the identical value of the
predicted traversal cost as the reference GP-based model. Hence, we can take
advantage of the learned GP-based model that provides the variance of the
learned random variables, and we can consider a model is well approximating
the GP-based reference if the predicted value is close to the predicted mean
value of the GP-based model. Thus, for each particular descriptor dsa ∈ G, we
can estimate the mean µ(dsa) = predicted(MT

GP,dsa) and its variance σ2(dsa).
Then, we can consider that the predicted value by the model M is correct with
respect to the reference model MT

GP if its distance from µ(dsa) is shorter than
two times of the standard deviation, i.e., the predicted value fits about 95%
values of the corresponding distribution represented by the GP. Based on this
idea, the model correctness quality indicator Rc can be defined as the ratio of
the number of the correctly estimated traversal costs to the total number of the
descriptors in G

Rc(M) =
|{dsa|dsa ∈ G and |predict(M,dsa)− µ(dsa)| ≤ 2σ(dsa)}|

|G|
· 100%.

(4)
Finally, we can further exploit explicitly labeled terrains and learn individual

GP-based model for each particular terrain type using only the corresponding
parts of the trails for the specific (human labeled) terrain types. In the evaluation
of the testing grid map G, we can use all learned models to predict the traversal
cost, but the value with the lowest variance (i.e., with the highest confidence
of the predicted value) is considered to be the reference traversal cost for the
particular descriptor. Such a compound model of individual GPs for particular
terrain types is denoted Mtt

GP and it can be used in (4) as the reference GP-
based model. Note that such an evaluation is possible only if the explicit labels
of the terrain types for the specific parts of the trails are available, which is not
the case of the incremental learning in the motivational deployment, but labels
are available for evaluation of the examined learning methods.

3 Evaluation Results

The experimental evaluation of the GNG in terrain assessment learning has
been performed for a hexapod walking robot in a set of laboratory terrains that
consists of flat ground, black fabric, artificial turf, wooden blocks, and wooden
stairs. Each terrain type has been traversed four times and a single Tall of all
concatenated trails has 827 descriptors. The evaluation is performed for a grid
G created for a different setup with slightly modified terrain types, see Fig. 2.

The GNG algorithm [4] has been implemented in C++, and both the learning
and inference take a fraction of millisecond, and it is practically negligible. The
utilized parameters according to notation in [4] are εb = 0.2, εn = 0.1, amax = 10,
α = 0.5, d = 0.995, and new node is added if the Euclidean distance of the new
measurement d to the nearest unit exceeds 0.15.

In addition to the GP-based model, we compare the GNG with the IGMN [10]
that is supervised approximation of the EM algorithm that incrementally con-
structs the Gaussian mixture model, adjusts its components and parameters
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(a) Real terrain setup (b) GP model

(c) IGMN model (d) GNG model

Fig. 2. A snapshot of the robot on wooden blocks and visualization of the assessment
of the reference G using the full GP-based model and learned IGMN and GNG for Tall.

based on each presented training sample. New components are inserted during
the learning process and must prove their relevance by accumulating sufficient
posterior probability to be retained by the mixture. The IGMN has been utilized
in our previous work [12] and here, we use the same setup with the maximal
number of components limited to ten, the grace period vmin = 100, minimal
accumulated posterior spmin = 3, and scaling factor δ = 1, but with terrain
descriptor d. Due to its implementation in Python, it is a bit more computa-
tionally demanding, and it operates in a fraction of second, which is, however,
still satisfiable for deployment in online path planning.

The performance of the predictors has been evaluated using (3) for the whole
trail Tall, but also for four individual trails T1, T2, T3, and T4 with the terrain
sequence of black fabric, wooden blocks, flat, stairs, and artificial turf. Besides,
we consider four additional trails with shuffled terrain types denoted Tri . The
evolution of the RMSE is depicted in Fig. 3, Fig. 4, and Fig. 5. In addition to
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Fig. 3. Evolution of RMSE(k) for particular learning step – each learning step the
whole grid map G is assessed using the currently learned model.
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Fig. 4. Evolution of RMSE(k) for individual trails T1–T4 from top to bottom.

the RMSE, we consider the correctness ratio Rc defined in (4) for evaluation
of the final learned models per particular method and individual trails. Since
the trail Tall can be considered as the most information-rich, the used reference
GP-based model is learned from Tall. The results are depicted in Table 1.

A similar evaluation can be performed for the compound reference model
consisting of the individual GP-based models for the particular terrain types
denoted Mtt

GP, see the two bottom rows in Table 1. In this case, the number
of the correctly estimated traversal costs is overall noticeably smaller than for
a single GP-based model using Tall. The two reference GP-based models are
compared in Fig. 6 regarding the predicted traversal cost and estimated variance.
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Fig. 5. RMSE(k) for the trails Tr1–Tr4 with a random order of the terrain types.

Table 1. Correctness ratio Rc according to the reference models MTall
GP and Mtt

GP

Reference
Method

Trail

Model Tall T1 T2 T3 T4 Tr1 Tr2 Tr3 Tr4

MTall
GP

IGMN 0.72 0.70 0.86 0.99 0.87 0.82 0.99 0.98 0.88

GNG 0.71 0.82 0.91 1.00 0.96 0.82 0.82 0.94 0.82

Mtt
GP

IGMN 0.52 0.16 0.53 0.56 0.18 0.23 0.31 0.62 0.18

GNG 0.66 0.53 0.61 0.71 0.26 0.47 0.68 0.73 0.24

Discussion – The assessments in Fig. 2 indicate that both the IGMN and GNG
models partially learned the traversability assessment in comparison to the GP-
based model. However, regarding path planning, it is important that the cost is
sufficiently distinguishable to avoid difficult terrains, which is satisfied for both
models. Regarding the evolution of the RMSE, the GNG performs a bit better
in the particular case shown in Fig. 3. On the other hand, it is evident from
the individual trails in Fig. 4 and especially with shuffled terrain types in Fig. 5
that particular sequence of the terrains can significantly affect the performance
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(a) Cost prediction of MTall
GP model (b) Cost prediction of Mtt

GP

(c) Variance of MTall
GP model (d) Variance of Mtt

GP

Fig. 6. Reference GP-based traversal cost model using the trails Tall with all learning
data (right) and compound model based on known terrain types (left). The bottom row
visualizes variances of the predicted traversal costs. The lower variances are shown in
the dark blue, and it can be observed that the compound model estimates the traversal
cost with the overall lower variances. The most unsure prediction is for wooden blocks,
see Fig. 2a. A single GP-based model using Tall has the highest variances for the flat
ground, and the wooden blocks with the high traversal cost are predicted with the
relatively lower variance, but only a few regions have the lowest variance.

regarding the reference GP-based model. It is also not surprising that difficult
terrains need several samples to improve the model, see Fig. 5 for the trail that
starts with the wooden blocks. Although we employed the GNG algorithm in
a very straightforward way, it provides the relatively competitive performance
to the IGMN regarding (3), except the trail that starts at wooden blocks (see
Fig. 5), which motivates us for further development.

In particular, the results indicate that terrain characterization purely based
on a continuous function can provide sporadic results as the real performance of
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the robot can vary significantly. It is partially addressed in the evaluation using
a compound model based on the individual GP-based model for each particular
terrain type. Regarding the results visualized in Fig. 6, an advantage of the
individual models of the traversal cost per particular terrain types is not clearly
supported. Even though there are more parts with the lower variance of the
predicted values, there is also the relatively unsure part corresponding to the
wooden blocks, where the predicted cost is significantly lower than in Fig. 6a. It
is most likely because the terrain descriptor of the wooden blocks is similar to
the wooden stairs and considering individual terrain classes reduces the number
of samples used in the model learning. Therefore, in our future work, we plan to
consider identification of the terrain types and eventually combine the benefits
of the both approaches to improve the overall traversal cost prediction. Thus,
we aim to investigate techniques of unsupervised clustering to automatically
identify possible terrain types and incrementally learn a model of the aggregated
traversability cost for such identified terrain classes.

4 Conclusion

We presented evaluation results on a straightforward deployment of the GNG
algorithm in incremental traversability assessment learning. We described the
problem and evaluation challenges related to the nature of the incremental model
learning and simultaneous usage of the model in decision-making for improving
the mission performance by a more informed path planning. Although the pre-
sented results do not support the GNG is the most suitable technique for the
addressed problem, its main benefit is in simplicity and computational efficiency,
which allows modeling the traversability cost using tens and hundreds of units
in comparison to the fixed number of components in the IGMN, where the size is
limited to ten to get a reasonable performance. We consider the added value of
this paper in reporting on evaluation results and introducing the methodology
for comparing predictors in incremental traversability assessment learning.

Regarding the results, there are still several open questions, but also promis-
ing ideas. We aim to further work on combining the continuous traversability
assessment function with more explicit terrain classification to improve the per-
formance by recently proposed GNG for anomaly detection in data streams.
Moreover, we also plan to consider the explicit sequence of the data measure-
ments and support the terrain classification and traversal cost modeling by multi-
dimensional time series.
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References

1. Bartoszyk, S., Kasprzak, P., Belter, D.: Terrain-aware motion planning for a walk-
ing robot. In: International Workshop on Robot Motion and Control (RoMoCo).
pp. 29–34 (2017)

2. Beyer, O., Cimiano, P.: Online labelling strategies for growing neural gas. In: Intel-
ligent Data Engineering and Automated Learning (IDEAL). vol. 6936, pp. 76–83
(2011)

3. Dunbabin, M., Marques, L.: Robots for Environmental Monitoring: Significant Ad-
vancements and Applications. IEEE Robotics Automation Magazine 19(1), 24–39
(2012)

4. Fritzke, B.: A growing neural gas network learns topologies. In: Neural Information
Processing Systems (NIPS). pp. 625–632 (1994)

5. Ghesmoune, M., Lebbah, M., Azzag, H.: A new growing neural gas for clustering
data streams. Neural Networks 78, 36–50 (2016)

6. Homberger, T., Bjelonic, M., Kottege, N., Borges, P.V.K.: Terrain-dependant con-
trol of hexapod robots using vision. In: International Symposium on Experimental
Robotics (ISER). pp. 92–102 (2016)

7. Kragh, M., Jørgensen, R.N., Pedersen, H.: Object detection and terrain classifi-
cation in agricultural fields using 3d lidar data. In: International Conference on
Computer Vision Systems (ICVS). vol. 9163, pp. 188–197. Springer (2015)

8. Nooralishahi, P., Seera, M., Loo, C.K.: Online semi-supervised multi-channel time
series classifier based on growing neural gas. Neural Computing and Applications
28(11), 3491–3505 (2017)

9. O’Callaghan, S., Ramos, F.T., Durrant-Whyte, H.: Contextual occupancy maps
using Gaussian processes. In: IEEE Int. Conf. Robotics and Automation (ICRA).
pp. 1054–1060 (2009)

10. Pinto, R., Engel, P.: A fast incremental gaussian mixture model. PLOS p. e0141942
(2015)

11. Prudent, Y., Ennaji, A.: An incremental growing neural gas learns topologies. In:
International Joint Conference on Neural Networks (IJCNN). vol. 2, pp. 1211–1216
(2005)
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