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Abstract. Personal air transportation on short distances is a promising
trend in modern aviation, raising new challenges as flying in low altitudes
in highly populated environments induces additional risk to people and
properties on the ground. Risk-aware planning can mitigate the risk by
preferring flying above low-risk areas such as rivers or brownfields. Find-
ing such trajectories is computationally demanding, but they can be pre-
computed for areas that are not changing rapidly and form a planning
roadmap. The roadmap can be utilized for multi-query trajectory plan-
ning using graph-based search. However, a quality roadmap is required to
provide a low-risk trajectory for an arbitrary query on a risk-aware tra-
jectory from one location to another. Even though a dense roadmap can
achieve the quality, it would be computationally demanding. Therefore,
we propose to cluster the found trajectories and create a sparse roadmap
of safe corridors that provide similar quality of risk-aware trajectories.
In this paper, we report on applying Growing Neural Gas (GNG) in
estimating the suitable number of clusters. Based on the empirical eval-
uation using a realistic urban scenario, the results suggest a significant
reduction of the computational burden on risk-aware trajectory planning
using the roadmap with the clustered safe corridors.

Keywords: Growing Neural Gas, Risk-aware planning, Urban Air Mo-
bility

1 Introduction

Urban Air Mobility (UAM) is an emerging field in the aerospace industry aiming
to provide personal air transportation on short distances [6] that would result in
raising the number of small aircraft flying in urban areas [8], which will increase
the risk of possible accidents. Any accident is not only a threat to the aircraft
and people on board but also to people and properties on the ground. A high
population density can characterize urban areas, and so any crash can have
immense consequences, such as the number of casualties or the caused material
damage. Hence, the UAM brings challenges in risk mitigation.
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The risk can be mitigated by risk-aware trajectory planning [10] to find the
least risky trajectory with the minimal induced risk in the case of a malfunc-
tion. Risk evaluation can be prohibitively demanding for real-time queries or
simultaneous planning of multiple aircraft. Therefore, a roadmap of risk-aware
trajectories can be determined to support graph-based planning methods. Fur-
thermore, the found least risky trajectories tend to be over less populated areas
such as rivers or less risky brownfields [7]. Such low-risk trajectory segments can
be called safe corridors, and similar safe corridor segments are common among
different least risky trajectories. Hence, the safe corridors can be determined
and utilized to determine a roadmap that would be a relatively dense roadmap
of safe (individual) trajectories otherwise. Then, existing graph-based planning
techniques can be employed for fast near-optimal risk-aware trajectory planning.

In this paper, we propose a clustering method based on the Growing Neural
Gas (GNG) algorithm [5] to determine safe corridors from a determined set of
least risky trajectory samples. The problem is determining a relatively spare
roadmap that would provide risk-aware trajectories with similar risk to the orig-
inal set of trajectories. The roadmap of the safe corridors can then be employed
in computationally efficient multi-query risk-aware trajectory planning. The ap-
proach is based on the unsupervised clustering of the GNG to determine the
roadmap vertices in the most used locations in the set of input trajectories.
The roadmap edges are then determined based on relations between the vertices
encoded in the GNG structure.

2 Problem Specification

The addressed problem of determining safe corridors from the set of available
risk-aware trajectories builds on the existing work to determine the least risky
trajectories [11]. However, the formal vehicle model is needed to determine the
final trajectory roadmap because it induces the proposed distances between
two sampled trajectory segments required in the clustering. Therefore, a brief
overview of the notion is presented to make the paper self-contained. For a de-
tailed definition of the least risky trajectory planning problem, the reader is
referred to [11].

The aircraft is modeled as Dubins Airplane [2] with the configuration ¢ =
(7,9, 2,0,1) with the position (z,y,2) € R3, § € S denoting the heading angle,
and ¢ € S standing for the pitch angle. The trajectories are thus determined in
the configuration space C = R® x S? and the aircraft state can be expressed as

cos f cos v
sin 6 cos ¥
sin
ugp !

; (1)

where v is the forward velocity of the aircraft, ug € [—1,1] denotes the control
input controlling the heading angle 6, and p is the minimum turning radius of
the aircraft. The pitch angle 1 is considered to change significantly faster than
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0, and thus abrupt changes in v are allowed, but ¥ € [tmin,¥max] has to be
satisfied. Trajectories are planned in the collision-free part of C denoted as Ceee.

For a trajectory I' : [0,7] — Cpree going from an initial configuration ¢; =
I'(0) to the final configuration ¢y = I'(Tr), the risk r induced by I" is given as

r(I) = / M(I(1)) dt, (2)

where M is an aircraft specific risk map, and M(q) denotes the risk associated
with any configuration ¢g. Note that I'(t) denotes the aircraft configuration ¢ on
the trajectory I' at the time ¢. Planning the least risky trajectory I'* between
two configurations ¢; and gy stands to find a feasible trajectory from g; to gy
with the minimal induced risk r that can be expressed as

I' = argmin r(I), st. I'(0)=gq, I (Tr-) =gqy, (3)
r

with the associated risk
m(gi,qr) =7 (1) . (4)

Fig. 1. An example of a safe corridors roadmap G with vertices V' (in orange). The
risk-aware trajectory I' (in green) between configurations ¢; and g (in red) can be
approximated by the trajectory I'® (in blue) found through the roadmap G. The
configurations ¢; and gy are inserted into the roadmap (shown by dashed lines), and
the least risky trajectory in the graph is found. As I'® is only an approximation of I,
its risk can be higher compared to the risk of I'.

Denote = = {I,I%s,...,I,} as a set of least risky trajectories from vari-
ous locations covering the operational area. Let G(V, E) denote a roadmap of
trajectories connecting configurations associated to the vertices V' connected by
edges FE representing the least risky trajectories. Since G created from = would
be very dense and thus graph-based searching for the least risky trajectory would
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be demanding, the problem is to find G representing trajectories = such that
finding an approximation of the least-risky trajectory I'¢ using the roadmap
G would be less demanding than determining I'. The aim is to find G that
minimizes the relative risk between trajectories I; € = and their corresponding
approximations from G. An example of trajectories is depicted in Fig. 1.

Let I'Y be the least risky trajectory from ¢; to qf through G. I'C visits
the intermediate configurations v; € V' that can be expressed as a sequence of
indices X' = {01, 09,...,05}. The corresponding risk r& of the roadmap-based
trajectory I'“ can be expressed as

[Z]-1
TG(QI" qf) = mg,n T(qi7 ’Uo-l) + Z r(vak7v0'k+1) + T(UU\E\ ? qf) : (5)
k=1

The addressed creation of the safe corridors roadmap G is a problem deter-
mining G with a suitable number of vertices k from the trajectories = such that
the mean relative risk between the original trajectory I" and its approximation
I'¢ is minimal. The optimization problem can be formally defined as Problem 1.

Problem 1 (Determining Safe Corridors Roadmap G ).

n G J J
AR i YY)
minimnize ﬁjE:1TFj) (6)

3 Proposed GNG-based Safe Corridors Roadmap

The proposed safe corridors roadmap determination is based on clustering the
given set of trajectories = using GNG to learn the best locations for the roadmap
nodes. The edges are then created using the learned topology encoded in the
GNG. The proposed roadmap creation is summarized in Algorithm 1, and it
works as follows.

The algorithm starts by sampling the trajectories = with the sampling step A
(Lines 3 to 5, Algorithm 1); the set of all samples is denoted as Q. The samples
are from the Special Euclidean group SE(2) = R? xS, where a sample is given by
its position and also its orientation. The nodes V' of the safe corridors roadmap
G are found by the GNG [5] modified for the SE(2) configuration space by the
proposed LearnGNG method detailed in Section 3.1. Once the GNG is terminated,
the found nodes serve as the nodes of the safe corridors roadmap G (Line 7,
Algorithm 1). Then, the edges of G are created using GNG edges that are non-
directional and only denote the relations between nodes, not the actual corridors.
Therefore a direction with the shorter feasible maneuver is preferred as the
directed edge of the roadmap G (Lines 8 to 12, Algorithm 1).

3.1 GNG-based Safe Corridors Topology Learning

The original GNG algorithm [5] is adapted for SE(2) to respect a distance
between two nodes, which depends on the Euclidean distance and also on the
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Algorithm 1: Safe Corridors Roadmap Creation

Input: M — Risk map; = — Set of trajectories.
Parameters: A — Sampling step; A — Aircraft model.
Output: G — Roadmap of safe corridors.

1 Function CreateCorridors(M, =):
2 | Q<0
3 forall I'; € = do
4 {d,q,..., qi;lj} < SamplePath([}, A)
5 Qe Quid.dh. . ai,}
6 Ggang  LearnGNG(Q)
7 G+ {V « Vang, E < 0}
8 forall (s1,s2) € Eang do
9 if £ (Dubins3D(s1,s2,.4)) < L (Dubins3D(sz, s1,.4)) then
10 ‘ E<—EU{(51,82)}
11 else
12 L E(—EU{(Sz,Sl)}
13 return G

vehicle’s heading angle. The algorithm is summarized in Algorithm 2, and it
works as follows.

The GNG constructs a group roadmap Ggng initialized by two nodes s,
and s, at randomized locations ¢, and ¢, (Lines 2 to 4, Algorithm 2). Then, the
learning epoch is repeated until a termination condition is met. In each iteration,
a random configuration (signal) is generated (Line 6, Algorithm 2) with the
probability distribution that should correspond to the probability distribution
of the underlying data; in our case, the underlying topology of safe corridors.
Since the trajectories = are sampled uniformly, the condition is satisfied by
selecting random samples from Q.

In the second step, the closest node s; and the second-closest node so to
& are found by the GetTwoClosestNodes method. The distance function Dist
between two configurations ¢; and ¢ is computed as

dimax
DiSt(QlaQQ) = maX(HQ%D - Q§D ) Ag% ’Z(Q?anﬂ) ) (7)

max

where ||q%D — q%DH is the Euclidean distance between the samples, Z(q?,¢5)
is the angular difference between their headings, and AY . and dp.x are the
maximum heading difference and Euclidean distance between two samples to be
considered as near, respectively. Thus, the closest node s; and the second closest
node so are given as

s1 = argmin Dist(q(v;), &), (8)
v, EV
s = argmin Dist(q(v;),§), 9)
’UiGV\Sl

where q(-) provides the configuration ¢ associated with the given node.
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Algorithm 2: Learning of GNG (adopted from [5])

Input: O — Set of samples.

Parameters: ¢, and €, — Attraction parameters for the closest node and
neighbors of the closest node, respectively; amax — Maximum
endge age; A — Number of generated signals before inserting
new node; o and d — Error reduction parameters when inserting
new node and for all nodes, respectively.

Output: Gogng — GNG Roadmap.

1 Function LearnGNG(Q):

/* GNG Initialization */
2 Ga, qp < RandomConfigurations(M)
3 Sa, Sp — CreateNodes(qa, qb)
4 Gang <+ {Vane < {sq, 50}, Eang + {(5a,5)}}
/* Learning phase of GNG */
5 while Terminal condition is not met do
6 & < Random(Q); ne < ne + 1 // Step 1: signal generation
7 $1, 82 < GetTwoClosestNodes(Vang,§) //Step 2: nearest nodes
8 forall e € GetConnections(Ggng, s1) do // Step 3: age update
9 L Age(e) < Age(e) +1
10 Error(s1) < Error(si) + Dist(s1,§) // Step 4: error update
11 q(s1) < q(s1) + e (€ —a(s1))) // Step 5: position update
12 forall n € GetNeighbors(Ggang,s1) do
13 | a(n) < a(n) + e (€ — a(s1))
14 if (s1,s2) € Egne then // Step 6: edge update
15 ‘ Age ((s1,82)) <0
16 else
17 L Ecng < Egng U (517 82)
18 forall e € Egne : Age(e) > amax do // Step 7: edge removal
19 | Ecnc < Eanc \ e
20 if ng > X then // Step 8: node insertion
21 ng <0
22 L InsertNewNode(Gang)
23 forall n € V do // Step 9: error reduction
24 L Error(n) < dError(n)
25 return Gang

For the position update (Line 11, Algorithm 2) a vector from s; to & is
calculated, where we exploit features of Euler angles and the heading difference
is calculated as

O — 85, = (0 — 65, + m)mod 27) + 7 (10)

to get a correctly oriented angle difference. The configuration of s; is adapted
towards € with the power of €, (Line 11, Algorithm 2), and all direct neighbors
of s1 are adapted towards £ with the power of ¢, (Lines 12 and 13, Algorithm 2).

The further important modification of the GNG is the node insertion. If A
random configurations (signals) £ have been generated since the last node inser-
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tion, a new node is generated by the InsertNewNode method and inserted into
Gene (Lines 20 to 22, Algorithm 2). The insertion is summarized in Algorithm 3.

Algorithm 3: Insertion of a new node into the GNG roadmap

Input: Gane(V, E) — GNG Roadmap.
Output: Updated roadmap Geng(V, E).

1 Function InsertNewNode(Gang):
2 q < arg min Error(v;)
v, €V
3 [+ arg min Error(v;)
v; EGetNeighbors(GaNG,9q)
a(g)+a(f)
2

7 <— NewNode (

E—E\(q,f)U(gr)U(rf)
Error(q) « aError(q)
Error(f) < aError(f)
Error(r) < Error(q)

®» N o ok

During the insertion, the node ¢ with the maximal error and its neighbor f
with the maximal error are determined. A new node r with the configuration
corresponding to the midpoint between g and f is created and connected to ¢
and f while the edge between g and f is removed. Finally, the errors of ¢ and f
are reduced by the factor a, and the error of r is assumed to be identical to the
error of q.

4 Results

The proposed method has been empirically evaluated in a realistic urban scenario
to test its performance and behavior. The test scenario consists of 5kmx5km
large urban area of the Prague city center adopted from [11]; the scenario is visu-
alized in Fig. 2. The herein considered risk is measured as on-ground casualties
in the case of a crash, and so the risk map is mainly given by the population
density and shelter provided by the environment. The utilized aircraft model cor-
responds to Cessna 172 with the minimum turning radius p = 65.7m adopted
from [12]. The set = of 3678 trajectories between randomly generated pairs of
start and goal configurations has been found by the RRT*-based risk-aware tra-
jectory algorithm [11]. The algorithm has been run for 750 for each trajectory.
Trajectories are visualized in Figs. 3a and 3b.

The maximum Euclidean distance dpyax = 250 m and maximum angular dif-
ference A%, = 30° have been used in the distance function (7). The used GNG
learning parameters are ¢, = 0.3, ¢, = 0.01, « = 0.75, d = 0.995, the maxi-
mum allowed edge age ay.x = 300, and a new node is inserted after generating
A = 300 signals. The utilized terminal condition is the number of vertices k
selected as k € {25, 50,100, 250,500, 1500}. The risk-based planning algorithm
from [11] has been used for the evaluation of risk associated with the determined
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%10% habitants / km?

ZHov

¥ = 50.07°N
1439°E 1446°E 14.

(a) Map (b) Area type (c) Population density

Fig. 2. Selected layers of the utilized urban scenario based on the Prague city center
adopted from [11]. The map layer is obtained from the OpenStreetMap [9] and real
population density layer is based on [4].

(a) Trajectories over the (b) Heatmap of the least (c) Roadmap vertices
city map risky trajectories

Fig. 3. A heatmap of the least risky trajectories obtained by [11] over (a) the city map,
(b) the resulting heatmap of 3 678 trajectories, and (c) 500 vertices of the GNG-based
roadmap (orange). Darker areas mean more trajectories passing through them.

safe corridors. The method has been implemented in Julia ver. 1.6.2 [1] and ex-
ecuted on a single core of the Intel© Core™ i7-9700 CPU. An example of the
found safe corridor roadmap’s nodes for £ = 500 is depicted in Fig. 3c.

The quality of the roadmap G is evaluated using the risk induced by the
trajectories between the initial and final configurations of the trajectories =.
The configurations have been inserted into the found roadmap, and the least
risky path has been extracted using Dijkstra’s algorithm [3]. The quality of G is
characterized by the ratio of the sum of risks induced by all the trajectories =.

Table 1. Roadmap quality given by (6) based on 3678 trajectories

Num. of vertices k 25 50 100 250 500 1500
Roadmap quality [-] 1.80 1.33 1.27 1.08 1.08 1.01
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Table 2. Computational demands of the proposed method

Num. of vertices 25 50 100 250 500 1 500

GNG Creation [s] 2 5 19117 353 3452
Roadmap edges creation [s] 6 11 18 33 47 103

Avg. query time [s] 2319 1.8 1310 0.8

The risk of the original trajectories and trajectories found using the safe
corridors roadmap G has been evaluated using [11] and the results are depicted
in Fig. 4. The quality of the roadmap is measured according to (6) with lower
values meaning the higher quality of the roadmap. The roadmap quality for
the evaluated number of vertices k is listed in Table 1, and the computational
requirements are in Table 2.

2.0 2.0
"Z 4 4 »\I
& Eles 15
: : I
g2 2 Z LOf Liadd1o
& LR LR Yy & I I I
0 0.5 0.5
25 50 100 250 500 1500 25 50 100 250 500 1500
Number of vertices in G |V [-] Number of vertices in G |V [-]
(a) All scenarios (b) Scenarios where [g;” — ¢7°|| > 2000 m

Fig. 4. Influence of the number of roadmap vertices k£ on the trajectory relative risk
and relative length compared to the original trajectories =: (a) all solved scenarios,
(b) scenarios where ¢; and ¢y are further apart. Medians (white dots) and 90 % non-
parametric intervals (thick vertical lines) are shown. The relative risk and relative
length reduce with the increasing number of the roadmap vertices as the found safe
corridors provide better coverage.

The results support the idea that the safe corridors roadmap can provide
trajectories with similar induced risk to the original trajectories =. Increasing k
increases the roadmap density that better covers the area. Notice the query times
are decreased with increasing k. It is because the risk of maneuvers inserting
initial and final configurations ¢; and gy into the roadmap needs to be evaluated,
and the maneuvers are generally shorter with increasing roadmap density; the
utilized risk evaluation [11] scales with the maneuver length. The best roadmap
with & = 1500 vertices is further analyzed.

For k = 1500, the median risk reduction is 4 % compared to the reference
method represented by the trajectories =. The 90 % non-parametric interval
of the relative risk is [0.77, 1.25]. Furthermore, the median length reduction is
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Fig. 5. The relative risk based on the distance between g; and ¢y: (a) all solved tra-
jectories, (b) trajectories where ¢; and ¢y are further apart.

5% compared to the reference, and the 90 % non-parametric interval of relative
length is [0.73, 1.47]. The analysis of the relative risk based on the Euclidean
distance between the start and final configurations is depicted in Fig. 5. Notice
that the risk is increased mainly for the short scenarios, in which the maneuvers
connecting ¢; and gy into the roadmap can significantly prolong the solution,
and so the risk. On the contrary, the risk is reduced compared to the reference
for the longer maneuvers.

5 Conclusion

A safe corridors roadmap generation for risk-aware trajectory planning is pre-
sented in the paper. The addressed problem is motivated by reducing the com-
putational demands of the single-query risk-aware trajectory planning meth-
ods by determining a set of trajectories from which a safe corridors roadmap
is created. The proposed method employs the GNG-based clustering to detect
common low-risk trajectory segments, so-called safe corridors, among provided
risk-aware trajectories. The resulting roadmap allows using graph-based plan-
ning for fast on-demand queries. The proposed method needs tens to hundreds
of seconds to build the roadmap. However, the queries can then be solved within
seconds, compared to hundreds of seconds required by the existing single-query
risk-aware trajectory planners.
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