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Abstract

In this paper, we address the problem of coordinating multiple robots to explore large-scale underground areas
covered with low-bandwidth communication. Based on the evaluation of existing coordination methods, we found
that well-performing methods rely on exchanging significant amounts of data, including maps. Such extensive data
exchange becomes infeasible using only low-bandwidth communication, which is suitable for underground environ-
ments. Therefore, we propose a coordination method that satisfies low-bandwidth constraints by sharing only the
robot’s positions. The proposed method employs a fully decentralized principle called Cross-rank that computes how
to distribute robots uniformly at intersections and subsequently orders exploration waypoints based on the traveling
salesman problem formulation. The proposed principle has been evaluated based on exploration time, traveled dis-
tance, and coverage in five large-scale simulated subterranean environments and a real-world deployment with three
quadruped robots. The results suggest that the proposed approach provides a suitable tradeoff between the required
communication bandwidth and the time needed for exploration.
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Nomenclature

R Set of all robots in a team.

n No. of the robots in the team: n = |R|.
r The current robot making a decision.

R′ Teammate robots of r; R′ = R \ {r}.
vr,max Maximum forward velocity of the robot r.

Ck,i Path length between the kth robot and the ith explo-
ration waypoint.

ctrial No. of experiment repetitions (trials).

cenv No. of different exploration environments.

tavg Average exploration time from the given set of trials.

dcov Maximum sensor coverage distance to consider an
object as explored.

lavg,max Average longest exploration path.

lsum Sum of the distances traveled by all the robots in all
trials.

covn Average coverage for a team of n robots.

Si,j,k Area covered by the kth robot in the jth trial of the
ith scenario.

Si Traversable area of the whole ith scenario.

M Local 3D grid map.

Mrad Radius of the local 3D grid map.

Mslope Terrain slope threshold for deciding traversability.

Mstep Terrain step threshold for deciding traversability.

bpositions Bandwidth required for the positions to be shared
between the robots.
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bmaps Bandwidth required for the maps to be shared
between the robots.

bwaypoints Bandwidth required for the waypoints to be shared
between the robots.

fpositions Frequency of positions broadcasting from each robot.
W Waypoints known to a particular robot. A waypoint

location wi ∈ W is defined solely by the position pi,
with no orientation component.

pi 3D position pi = (px, py, pz) of the ith waypoint
wi ∈ W.

Gi,MinPos Rank of the ith exploration waypoint calculated by
the MinPos method.

Gi,cross Rank of the ith exploration waypoint calculated by
the proposed Cross-rank method.

Hk Ordered set of robots’ r′k ∈ R′ positions received by
the robot r.

hk,l Particular position of r′k received by the robot
r. During the mission, robot r receives positions
{hk,0,hk,1,hk,2 . . . },hk,l ∈ Hk from the kth robot
as the kth robot updates its location when it explores
the environment.

mr Cross-rank parameter used for thresholding if a way-
point is considered to have already been visited by
another robot.

dlseg(a,b) Function that measures a distance between a position
a and line segment b.

s(k,pi) Function that finds the closest line segment from the
kth robot to the position pi.

Wcr Waypoints with the lowest Cross-rank; Wcr ⊂ W.

1 Introduction

The studied robotic exploration is to create a model of an
unknown environment by a team of mobile robots. Sev-
eral subproblems can be identified to address autonomous
robotic exploration, such as localization, mapping, plan-
ning, navigation, determination of further exploration
waypoints, selection of the next navigational waypoint,
and, in the case of multi-robot exploration, also the team-
ing efficiency. Each of these parts represents a complex
problem affecting the performance of the whole explo-
ration, and all of them are actively studied and addressed
by different approaches, such as localization and mapping
for the exploration (Ebadi et al, 2020), while the explo-
ration waypoint determination is addressed in (Williams
et al, 2020), to name a few. The exploration performance
can be improved by increasing the number of explor-
ing robots. Then, robot coordination becomes crucial to
efficiently allocating possible exploration waypoints for
each robot. In the present work, we focus on robot coor-
dination during exploration missions while considering
communication constraints between the robots.

In the literature, we can find exploration approaches
deployed in office-like environments (Smith and Hollinger,
2018) open outdoor areas (Huang et al, 2022), or in
Subterranean Challenge (SubT) organized by Defense

Fig. 1 An example of decision-making at the crossroads of a cave-
like environment. Robot 1 is aware of only two possible exploration
waypoints (Waypoint 1 andWaypoint 2) because the limited commu-
nication does not allow map sharing between the robots. Note that
the map is shown only for reference. However, the traversed path
(set of positions) has been shared from Robot 2 to Robot 1. Thus,
based on the shared path, Robot 1 can make the desired decision to
follow Waypoint 1 since Waypoint 2 is in the way that Robot 2 has
already visited.

Advanced Research Projects Agency (DARPA) (Chung
et al, 2023), where robots search various underground
environments, including mine tunnels, caves, and urban
underground. A significant limiter of coordination meth-
ods in underground environments is the quality of the
communication, which we assume to be unreliable and
low-bandwidth. Therefore, in the present study, we focus
on decentralized exploration methods to account for unre-
liable communication (Azpúrua et al, 2023). We assume
that unreliable communication causes occasional packet
losses, and also, the communication between the robots
might be temporarily unavailable. In the studied case,
the robots are deployed underground, equipped with
low-bandwidth 868/915MHz communication modules for
long-range communication. The communication modules
were tested in a cave underground (Zoula et al, 2021), and
they allow broadcasting about 100B s−1 from each robot.

With such a limited communication bandwidth, the
methods that require sharing dense maps or large amounts
of data cannot be employed. Hence, we propose alterna-
tive methods that are based on the ranking of possible
waypoints. The proposed ranking is called the Cross-
rank and it is an integer value computed locally by the
particular robot for each potential exploration waypoint
to evaluate how many of the other robots in the team
took each way at the crossroads. Thus, based on the
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Cross-rank, robots aim to spread at each crossroad uni-
formly. It increases the likelihood of exploring areas that
are either unexplored or unlikely to be visited by other
robots. The idea of the proposed waypoints ranking is
illustrated in an example depicted in Fig. 1. Because the
Cross-rank is calculated in a decentralized way and only
requires sharing position data, which is small enough to
be broadcast redundantly, the method is inherently robust
to temporary communication outages. Besides, it further
avoids difficulties when merging maps from other robots
when the mutual positions of the robots are not accurate
enough.

The desired behavior can also be observed in existing
exploration approaches, such as (Puig et al, 2011), where
the authors rely on centralized decision-making and avail-
ability of the global map of the explored environment,
which puts relatively high requirements on communication
reliability and available bandwidth. Those communica-
tion properties are unavailable in the addressed scenarios,
with unreliable communication capable of broadcasting
just a hundred bytes per second. However, such a low-
bandwidth, unreliable communication showed to be suf-
ficient for sharing robots’ positions (Bayer et al, 2023),
which motivated us to study coordination methods that
can exploit a broader range of communication technolo-
gies than methods that require map sharing. In addition,
low bandwidth usage is also beneficial when other mission-
specific data must be shared between the robots. We
would like to highlight the following features of the
proposed method.

• The proposed coordination principle, named the Cross-
rank, improves exploration performance in comparison
to independently exploring robots while using only low-
bandwidth communication.

• Experiments with three quadruped walking robots
demonstrate the method’s ability to coordinate robots
despite unreliable communication links with packet loss
above 50%.

Moreover, the contributions of the presented work are
considered as follows.

• Benchmark of the 12 decentralized coordination meth-
ods, including MinPos and optimal task allocation using
the Hungarian algorithm, in five large-scale under-
ground setups, based on 600 exploration trials, where
each robot traveled on average over 1.3 km in each
experiment.

• Qualitative analysis of the reference state-of-the-art
method Multiple Traveling Salesman Problem (MTSP)
and qualitative analysis of the effects of greedy and

TSP-based waypoint selection on the coordination effi-
ciency.

• Empirical study of the localization drift impact on
the exploration performance and coordination of the
heterogeneous team.

The rest of the paper is organized as follows.
An overview of the related multi-robot coordination
approaches in exploration missions is summarized in the
following section. The addressed problem and perfor-
mance indicators used in the quality evaluation of the
proposed and existing solutions are presented in Section 3.
The low-level autonomy used by the coordination meth-
ods evaluated is described in Section 4. An overview of the
evaluated methods from the literature and three proposed
methods is presented in Section 5. The proposed decen-
tralized coordination methods are detailed in Section 6.
Evaluation results are summarized in Section 7 and fur-
ther discussed in Section 8. The paper is concluded in
Section 9.

2 Related Work

Autonomously exploring robots have been deployed in
various outdoor (Huang et al, 2022) and indoor (Miller
et al, 2020) scenarios using single and multi-robot
approaches. Multi-robot teams can increase exploration
efficiency by employing multiple units in parallel (Azpúrua
et al, 2023). Besides, teams can also benefit from the
complementary properties of the robots (Heppner et al,
2013). Nevertheless, in large-scale environments, commu-
nication plays a key role when sharing data necessary
for the coordination of the robots. Existing multi-robot
coordination approaches can be divided according to the
demands on the bandwidth and reliability of the commu-
nication connectivity among the robots within the team.
In a case where the bandwidth and connectivity are not
an issue, the robots can share evidence grids to build
a global map that is used to decide the next naviga-
tional waypoint for each robot, e.g., using the closest
frontier (Yamauchi, 1998). Utility-based assessment of the
next-to-visit location has been proposed to improve the
exploration performance by evaluating the distance to the
next waypoint location and the expected coverage of the
not yet explored part of the environment (Burgard et al,
2000).

A segmentation method based on the Voronoi diagram
capable of clustering potential exploration waypoints into
sets corresponding to rooms and corridors is proposed
by Wurm et al (2008). The Hungarian algorithm can then
be used to assign robots to the clusters. The method is also
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used in (Xu et al, 2013) as centralized decision-making.
The detection of important parts of the environment has
been used in (Kim et al, 2023), where the authors propose
to detect doors and rooms to improve the distribution of
the robots in the environment. On the other hand, Puig
et al (2011) propose to distribute robots in the environ-
ment by K-means clustering of the potential exploration
targets, from which the next navigational waypoint is
selected for each robot.

As for the environment models being explored, spatial
and traversability models are jointly explored in (Prágr
et al, 2022) using a formulation of the Generalized TSP
to select the next navigational waypoint. Variants of the
TSP are also used for solving inspection (Phung et al,
2017), single-robot surface mapping (Song and Jo, 2018),
or coverage path planning (Xie et al, 2020). For the multi-
robot case, Hussein et al (2014) formulated the problem
as a variant of the MTSP for solving task allocation with
multiple robots. The same idea is also described in (Ali-
tappeh and Jeddisaravi, 2022), where the authors mention
the usage of the MTSP for solving various task allocation
problems, including coverage by multiple Uncrewed Aerial
Vehicles (UAVs) (Ann et al, 2015).

The MTSP is further benchmarked in multi-robot
exploration scenarios by Faigl and Kulich (2015) in
a cluster-first, route-second manner, where potential
exploration waypoints are clustered by K-means cluster-
ing first. Then, each robot selects the next exploration
waypoint from the given cluster based on the solution of
the TSP. Another benchmarked method uses a solution
to the task-allocation problem using the Hungarian algo-
rithm to assign robots directly to the potential exploration
waypoints. Based on (Faigl and Kulich, 2015), the Hungar-
ian algorithm and MTSP formulation of the multi-robot
exploration problem lead to the overall best exploration
performance among the evaluated methods. However,
these methods are used in a centralized manner (Queralta
et al, 2020) or require sharing dense environment models
between the robots.

The coordination policy can also be learned through
training, while having global knowledge about the envi-
ronment to assess the quality of the actions taken. An
example of such an approach is presented in (Westheider
et al, 2023), where the authors propose training a coor-
dination strategy for multiple UAVs to create a map of
environments collectively. The authors used deep rein-
forcement learning with rewards based on the reduction
of map entropy and demonstrated their approach in sim-
ulations using both synthetic and real-world data. The
approach is for obstacle-free environments, thus not suit-
able for cluttered underground environments. A more

suitable approach for environments with obstacles is pro-
posed in (Tan et al, 2022), where the authors present
a promising approach using a deep reinforcement learning
model for decentralized multi-robot exploration of envi-
ronments where robots may exchange maps and positions.
The authors design a reward function to maximize the
joint area explored while minimizing local interactions,
distance traveled, and time to completion.

As for deciding which robot should follow which way-
point, we can distinguish between centralized and decen-
tralized approaches. The centralized approaches rely on
collecting maps from the robots to allocate tasks for each
robot. Hence, it can be ineffective when communication is
unreliable, such as when messages are not received within
a few dozen seconds. Decentralized coordination methods
might also use available information from other robots to
estimate the behavior of the other robots as accurately
as possible to make good decisions. If information from
some robots is not precise or is delayed, the quality of the
decisions decreases, but some decisions can still be made.

An example of the decentralized approach that con-
siders the amount of data exchanged between the robots
is described by Batinović et al (2020). The authors show
a method that exchanges robots’ positions and locations
of the potential exploration waypoints between the robots.
The method utilizes the Hungarian algorithm to assign
potential exploration waypoints to the robots. However,
the approach is tested only in a very small-scale environ-
ment with a few crossroads. Nevertheless, a considerable
advantage of using the Hungarian algorithm on each
robot is that it can utilize the last known states of the
other robots to estimate their decisions without relying
on explicitly exchanging messages. The need for explicit
message exchange during the task allocation procedure
increases the time required for a decision, especially when
communication is unreliable. A representative approach of
the explicit message exchange is a market-based approach,
such as (Hollinger and Smith, 2018) with a single-bid local
auction.

The MinPos method (Bautin et al, 2012) is another
example of the decentralized decision-making method,
where each robot makes decisions individually but consid-
ers the possible decisions of the other robots. MinPos is
based on ranking possible further exploration waypoints
to evaluate their importance with respect to (w.r.t.) each
robot r. The robot then chooses the waypoint with the
lowest rank. In (Bautin et al, 2012), the rank Gi,MinPos of
the ith exploration waypoint for the robot r is computed
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as

Gi,MinPos =
∑

∀Rk∈(R\{r}),Ck,i<Cr,i

1, (1)

where R is the set of all robots, and Ck,i is the path length
between the kth robot and the ith possible exploration
waypoint. However, the computation of Ck,i requires shar-
ing maps and waypoints between the robots. Nevertheless,
a more recent work (Wu and Luo, 2022) shows a sat-
isfactory performance of the MinPos when used under
unreliable communication.

The proposed Cross-rank-based methods consist of two
steps. In the first step, waypoint candidates are selected
based on the Cross-rank to distribute robots at the cross-
roads. The second step is used when there are multiple
candidates for the next exploration waypoint. MinPos
inspired the design of the second steps for proposed meth-
ods CRSRm,p and CRESRp to use path lengths Ck,i

and their approximation, respectively. The last proposed
method CRTSPp has the second step based on solving the
TSP instance to determine the order in which all possible
waypoints can be visited, similar to the second step of the
MTSP-based approach (Faigl and Kulich, 2015). Never-
theless, the first steps of the proposed methods are based
on different ideas than in (Wu and Luo, 2022; Faigl and
Kulich, 2015).

Horyna et al (2023) propose to coordinate the robots
based on exchanging their positions using ultraviolet
direction and ranging, which completely avoids radio com-
munication. However, it requires the robots to be in the
line of sight, thus making it unsuitable for a cluttered
environment, such as underground. Burgard et al (2000)
address a low-bandwidth communication by sharing maps
represented by sets of polygons that are more memory effi-
cient than grid maps. Schulz et al (2019) propose to use
the occupancy Normal Distributions Transform (NDT)
as a representation with low memory footprint, shareable
via a network with the bandwidth of 37.5 kB s−1. The
authors report that at least 4.1 kB s−1 of the bandwidth
has been used, which is more than the communication
bandwidth available in our motivational scenario. There-
fore, based on the literature review, we propose a novel
method capable of multi-robot coordination based only
on the robots’ shared locations to fit the target communi-
cation bandwidth. Although methods including MinPos,
MTSP, or task-allocation using the Hungarian algorithm
do not fit bandwidth requirements, even when compres-
sion of the shared data is used, we use them in the
presented comparison for reference.

3 Problem Statement

Since we are focused on the decentralized coordination of
homogeneous multi-robot teams, an identical exploration
framework runs on all robots. The architecture of the
framework consists of two parts, as depicted in Fig. 2.
Its central part is the “Coordination algorithm,” which
can be one of the existing methods evaluated or the pro-
posed one. The second part is responsible for autonomous
navigation, which consists of sensing, localization, an envi-
ronment model, and navigating the robot toward the
selected waypoint.

Communication channel

Coordination algorithm

Model of the environment

Data sharing with other robots

Navigation to the selected 
waypoint

Sensing, localization Motor controllers

Waypoint
updates

Map
updates

Positions 
of other 
robots

Select the next navigation waypoint

Set of all 
known 
waypoints

Access to map, 
used for 
calculation of 
distances

Current 
robot 
position

Selected
waypoint

Aligned laser scans, 
robot pose Actions

Robot
position

Autonomous navigation

Avoid
obstacles

Fig. 2 Connections between the coordination algorithm and the
rest of the exploration system.

Each coordination method can share a specific set of
data with other robots. Although the shared data might
be used in different ways depending on the coordination
method used, the process of generating the data from
sensory measurements is identical for all the evaluated
methods. Three inputs from the navigation stack to a
coordination method are (i) map updates, (ii) updates
of the exploration waypoints, and (iii) robot position
provided by the localization system.

The coordination algorithm outputs a single waypoint
toward which the robot is navigated. Coordination algo-
rithms that require calculating distances between the
waypoints and robots do that through planners accessing
both parts of the environment model: the global map and
local map covering the robot’s surroundings. The robot
stops its exploration when no further exploration way-
points are available. The underlying navigation method,
used for all the methods under the test, is detailed in
Section 4.
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The following assumptions are made to limit the scope
of the paper and focus the presentation on the proposed
approaches to the coordination mechanism.

1. The robots are localized within the same coordinate
frame established at the beginning of the mission,
where the individual localization systems are initial-
ized to the same origin. It allows sharing positions
between the robots without the need for additional trans-
formations between coordinate frames. See (Bayer et al,
2023) or Section 4 for an overview of how such a joint
coordinate frame can be established.

2. Corridors are considered sufficiently wide so that the
robots cannot block each other while passing through a
corridor. It allows for simplifying navigation and path
planning.

3. The sensor equipment of the robots has similar char-
acteristics, including sensory range, the density of the
measurements, and field of view. It unifies reason-
ing about further exploration waypoints detected from
a similar distance for all the robots.

The assumptions might be relaxed at the cost of more
complex transformations, planning, and sensor models.

3.1 Performace Indicators

In the presented work, we compare the evaluated multi-
robot coordination methods by the following performance
indicators.

• Exploration time is the main performance indicator
of the exploration system, also used in (Batinović et al,
2020) and (Qin et al, 2019). The exploration time tj for
the jth trial measures the time from the start of the mis-
sion triggered by the event when the union of the areas
explored by the individual robots covers all reachable
parts of the environment. Thus, none of the robots has
to explore the whole environment by itself. For compar-
ing the coordination methods using the same underlying
navigation stack, the strategy yielding a lower time
required to explore the environment is considered bet-
ter. The overall performance of multi-robot exploration
is indicated by the average time tavg required to explore
the environment and its standard deviation from all the
performed trials ctrial for the particular given scenario
and particular method.

tavg =
1

ctrial

ctrial∑
j=1

tj . (2)

Note that it is assumed that the robots have omni-
sensing capabilities. Therefore, a place is considered
explored by a robot if the distance between the place
and the robot is shorter than the coverage distance dcov.
The particular value of dcov might not necessarily be
the longest sensor range. Its value can be motivated by
tasks where robots, in addition to capturing 3D mod-
els of the environment, also collect other data from the
environment, such as artifact recognition in the DARPA
SubT Challenge. The robots can use cameras to detect
artifacts, for which the distance required for the cam-
era to detect an artifact is shorter than the range of
the LiDAR sensors used for creating a spatial model or
obstacle avoidance. Therefore, it can still be required
to get closer to the area to ensure artifacts were not
detected by the camera, since they were too far from
the robot, despite the fact that a robot can already
cover the specific area with its LiDAR from a distance.
In the case that the only purpose of the exploration is
the resulting spatial model, dcov can be set to the used
LiDAR sensing range, and the exploration can behave
similarly to spatial frontier-based exploration.

• Distance traveled by robots is the indicator used
similarly as in (Wang et al, 2019). More specifically, we
compute the average length of the longest exploration
path lavg,max based on (Faigl and Kulich, 2015):

lavg,max =
1

ctrial

ctrial∑
j=1

max(lj,1, lj,2, . . . , lj,n), (3)

where lj,i is the length of the traveled ith robot’s path
during the jth trial repetition, ctrial is the number of
repetitions, e.g., for five trials used, ctrial = 5. More-
over, we also compute the sum of the distances traveled
by all the robots in all performed trials lsum, to pro-
vide an absolute value of the traveled distance in the
exploration:

lsum =

ctrial∑
j=1

n∑
i=1

lj,i. (4)

• The average coverage is the average area covered by
individual robots during the whole exploration mission.
It evaluates the ability of the coordination methods to
distribute robots within the environment. The average
coverage for a team of n robots is calculated as

covn =
1

cenvctrialn

cenv∑
i=1

ctrial∑
j=1

n∑
k=1

Si,j,k

Si
, (5)

6



where cenv is the number of exploration environments
(cenv = 5 is used), Si,j,k is the traversable area cov-
ered by the kth robot using its sensor with the range
dcov, and Si is the total traversable area of the ith envi-
ronment. When the count of the robots n is taken into
account, covn should ideally be close to 1/n. Neverthe-
less, an overlapped coverage is expected, especially in
underground scenarios, where the robots start from the
same area, and parts of the environment are reachable
only by a single or limited number of passages.

• Progress of the environment coverage is an indi-
cator also used in the literature, such as (Shrestha et al,
2019). By the progress of the coverage, the coordination
methods can be evaluated qualitatively, showing how
area coverage for each robot and the joined coverage are
increasing until the whole environment is covered.

• Estimated required bandwidth is the indicator
to compare the coordination methods regarding the
amount of data broadcasted from one robot to the rest
of the robotic team.

4 Autonomous Navigation

Processing the sensory data and robot navigation toward
the waypoint selected by one of the studied coordination
methods is achieved by the navigation stack, identical for
all the coordination methods, marked as “Autonomous
navigation” in Fig. 2. The methods employed consist of
localization and mapping, environment model building,
path planning, and path following. Note that the detailed
description of all the employed methods is out of the
paper’s scope. Therefore, we highlight the main features
and design choices. An interested reader can find further
details in (Bayer et al, 2023).

Localization is solved by each robot independently;
however, the important part of the system deployment
is an initialization of the robots’ coordinate frames at
the beginning of the mission. The initialization is crucial
because it allows the robots’ positions, maps, and way-
points to be shared within the same global coordinate
frame. That is the reason why such initialization is per-
formed in the DARPA SubT Challenge (Bayer et al, 2023)
using an entrance gate to the mission area; see a snap-
shot of the mission start in Fig. 3. After initialization
of the robots’ coordinate frames, the robots use a local-
ization system based on (Pomerleau et al, 2013) with
various improvements, including deskewing (Deschênes
et al, 2021) to localize themselves within the environment.

The localization system aligns scans from the robot’s
range sensor. The aligned scans are used to build an envi-
ronment model. Since the studied problem is motivated by

Fig. 3 The initialization process of the coordinate frames of the
robots using a gate with various types of markers before the mission
of the DARPA SubT Challenge.

large environment exploration, already addressed within
the DARPA SubT Challenge (Chung et al, 2023), therein
developed solutions might be used, such as (Bouman
et al, 2020). Nevertheless, the model of the CERBERUS
team (Dang et al, 2020) uses a precise local map for opti-
mizing safe local plans and sparse global graphs that allow
the robot to reposition to some previously visited loca-
tions, which is used by their exploration strategy (Kulka-
rni et al, 2022). Also, the CTU-CRAS-NORLAB team
used a sparse global graph to represent already visited
traversable areas and a dense local planning graph to avoid
obstacles and optimize path cost (Bayer and Faigl, 2021).
Hence, for the presented work, we opted for a model that
combines (Dang et al, 2020) and (Bayer and Faigl, 2021).

The model is composed of two parts: a global sparse
graph representing the topology of the traversable areas
and a local 3D grid map M of the environment (Bayer
et al, 2023). The local map represents the surroundings
of the robot within the radius Mrad by occupancy prob-
ability and the shape of the terrain. For each cell of the
3D local map, the traversability based on the geometrical
properties of the terrain, including step height and terrain
slope, is computed. Then, a cell is considered traversable
if both the slope of the terrain and the terrain step within
the robot radius rrad are below the thresholds Mslope and
Mstep, respectively. Each traversable cell forms a vertex
in the planning graph, and each of the two neighboring
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vertices defines an edge for the planning graph connect-
ing the respective vertices. Such a local planning graph is
merged with the global planning graph.

The global planning graph is used to estimate the dis-
tance between two locations, which is essential for the
tested coordination methods when exploration waypoints
are outside the robot’s surroundings. The global graph is
a sparse representation of an environment that is incre-
mentally constructed from the local planning graph, where
from each new local planning graph, obtained when the
robot updates its local map, only vertices that are farther
than the radius of the robot’s circumference are added and
connected to the global graph. If a map is shared with the
robot from another robot, then the shared map is used to
build a local graph connecting traversable vertices, which
is then merged into the global graph in the same way
as the robot’s local planning graph. Note that the global
planning graph is also used to navigate the robot when
the navigation waypoint is located outside the local area.

New possible exploration waypoints are identified
based on the measured information gain as follows. For
a given cell, the information gain measures how much
of the not yet observed spatial model can be covered if
the robot reaches the given cell. For computing the cov-
erage, it is assumed that the robot is equipped with an
omnidirectional sensor with the range dcov.

Having the determined waypoints, they are clustered
as in (Faigl and Kulich, 2013). So, reachable cells with
non-zero information gain are clustered, and the cluster
representants are used as the next potential exploration
waypoints. The navigation along the plan to the explo-
ration waypoint selected by the particular coordination
algorithm is executed by employing the model predic-
tive control for path following. The parameters of the
navigation system used for the reported results from the
simulations and real-world deployment are summarized in
Table 1.

Table 1 Main parameters of the navigation system

Parameter
Environment

Simulated Real-world

Radius of the robot rrad [cm] 40 28

Robot max speed vr,max [m s−1] 1.2 0.7

Environment coverage distance dcov [m] 4 6

Local map size Mrad [m] 13 8

Local map resolution Mres [cm] 5 4.5

Terrain max traversable step Mstep [cm] 24 24

Terrain max traversable slope Mslope [°] 20 40

5 Coordination Methods

Based on the literature review, we selected representa-
tive methods that have been implemented and compared
with the proposed methods. All the coordination methods
implement an interface for the decentralized coordination
algorithm shown in Fig. 2. Thus, a method that coordi-
nates the multi-robot team is running in parallel on all
robots, and the only way a robot may affect the behav-
ior of others is through shared data that can be map
updates, shared waypoint set updates, or by sharing its
position. The coordination method is triggered to select
the next exploration waypoint when any of the following
cases occur.

1. At the exploration mission start.
2. If the exploration waypoint is no longer valid since the

area it represents is considered covered by the robot’s
sensors or other robots’ sensors when the information
about the waypoints and robots’ positions is shared.

3. Robot reached the waypoint, or the waypoint became
unreachable.

In the rest of the section, we briefly summarize the
evaluated multi-robot coordination methods together with
their data-sharing requirements.

• Closest is the simplest method used in the comparison
that is based on the single-robot approach (Yamauchi,
1997), where the robot is navigated to the closest explo-
ration waypoint while no data are shared with other
robots.

• Closestm,w is based on (Yamauchi, 1998), where the
robots still greedily select the closest waypoints. How-
ever, the robots share information about maps (denoted
by the superscript symbol m) and exploration waypoint
locations (denoted by the superscript symbol w).

• TSP is based on selecting the next exploration way-
point by utilizing a solution of the TSP, assuming
that the robot is going to visit all possible exploration
waypoints in the order given by the solution of the
respective TSP instance. The method does not share
any data with other robots.

• TSPm,w is a variant of the TSP, but it shares robot
positions, map updates, and waypoints.

• ETSP and ETSPm,w are two evaluated methods
that are similar to the TSP and TSPm,w methods,
respectively. However, they use the Euclidean distance
between waypoints and between the waypoints and the
robot position instead of the distance matrix based on
the lengths of planned paths between the waypoints and
between the waypoints and the robot position. Using
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Euclidean distance saves computational resources when
computing expected travel costs between the waypoints.
Nevertheless, path planning using an available map
is performed when a robot is navigated to a selected
waypoint.

• Hunm,w,p is our implementation of the Hungarian algo-
rithm for task allocation based on (Batinović et al,
2020). The assignment optimizes the sum of the path
lengths required for n robots to reach k different way-
points. Dummy waypoints or virtual robots are added to
the instance of the task allocation problem when n ̸= k.
Similar to method Closestm,w, the Hungarian algorithm
uses a short decision horizon, not taking into account
the steps required after reaching the selected waypoint.
The main difference is that by employing Hunm,w,p,
the robot also takes into account the decisions of other
robots. Hunm,w,p requires sharing waypoint locations,
map updates, and robot positions (denoted by the
superscript symbol p).

• MTSPm,w,p is based on (Faigl and Kulich, 2015) with
K-means clustering to allocate a set of waypoints to
each robot and then use the solution of the TSP to select
the next exploration waypoint. Like the Hungarian algo-
rithm, MTSPm,w,p shares waypoints, map updates, and
robot positions.

• MinPosm,w,p (Bautin et al, 2012) is the last imple-
mented method from the literature. Although the deci-
sion on the next exploration waypoint for each robot
is decentralized using the computed rank of each pos-
sible waypoint, the method shares robot positions,
waypoints, and map updates that are utilized in rank
computation.

• CRESRp is one of three variants of the proposed
method that operates in two steps. In the first step,
a subset of all possible exploration waypoints is
obtained as waypoints to distribute the robots at cross-
roads. Then, the next exploration waypoint is selected
from the subset to spread the robots as far from each
other as possible using Euclidean distances between the
robots.

• CRSRm,p is proposed to demonstrate the effect of
using Euclidean distance when spreading the robots.
Thus, the CRSRm,p variant of the proposed method
uses “true” distances between the robots instead of
Euclidean distances when spreading the robots. The dis-
tances are computed as path lengths found within the
available maps. Hence, its disadvantage w.r.t. CRESRp

is the requirement on the increased bandwidth to share
map updates m in addition to the robot positions p.

• CRTSPp is a proposed alternative to show further
properties of CRESRp and the effects of ordering way-
points based on solving instances of the TSP. Thus, it
uses the identical first step as CRESRp, but then it uses
a solution of the TSP to select the exploration waypoint
from the subset of waypoints obtained by the first step,
which is inspired by (Kulich et al, 2011).

Table 2 Data sharing requirements for the coordination method
(exploration strategies), sorted from the most communication
demanding strategy

Exploration Type of shared data Bandwidth

strategy Maps Waypoints Positions used [kB s−1]

MTSPm,w,p ✓ ✓ ✓ 23.6

MinPosm,w,p ✓ ✓ ✓ 23.6

Hunm,w,p ✓ ✓ ✓ 23.6

Closestm,w ✓ ✓ – 23.5

TSPm,w ✓ ✓ – 23.5

ETSPm,w ✓ ✓ – 23.5

CRSRm,p ✓ – ✓ 23.5

CRTSPp – – ✓ 0.1

CRESRp – – ✓ 0.1

Closest – – – 0.0

TSP – – – 0.0

ETSP – – – 0.0

5.1 Data Sharing Requirements

Data needed to be shared between the robots is summa-
rized for each studied multi-robot exploration strategy in
Table 2. The bandwidth required for each strategy is cal-
culated as the sum of the data that are broadcast from
each robot to share robot positions, waypoints, or maps,
as the particular method needs. In particular, the posi-
tion sharing is calculated as bpositions = fpositions(12+1) =
5 · 13 = 65B s−1, where fpositions is the frequency of posi-
tions broadcasting from each robot and 12B is the size of
three floats representing the robot position in xyz coor-
dinates, and 1B is reserved for the robot identifier. The
estimation of the bandwidth requirement for map shar-
ing was measured during the simulated experiments as
the average bandwidth bmaps = 23.5 kB s−1. Note that
the relatively low required bandwidth to share maps is
caused by compressing them and by sharing only map
changes with the other robots. Since the sensory range
of the robots is limited, and the robot speed is lim-
ited to 1.2m s−1, the rate of newly covered parts of the
map is bounded, and thus, the amount of data for map
updates is limited as well. The bandwidth requirements
do not increase with the total size of the built map. Since
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the robots handle unknown space as untraversable, they
broadcast to others only traversable parts of the environ-
ment or changes between traversable and untraversable
areas, further decreasing the bandwidth requirements.

Waypoints are shared by broadcasting changes in way-
point sets by each robot, leading to an average required
bandwidth of about bwaypoints = 66B s−1. The way-
points w are shared with the map updates m to enable
the determination of how to reach each waypoint and
thus determine the expected travel cost. All data shared
between the robots broadcasts changes to the models or
data with a fixed size. Thus, bandwidth requirements do
not grow with the duration of the exploration mission. On
the other hand, the bandwidth requirements are propor-
tional to the velocities of the robots vr,max, which does not
exceed 1.2m s−1 in the present work. The effect is caused
by the fact that when a robot moves faster, it needs to
broadcast more map and waypoint changes per second.
A similar principle holds for sharing the robots’ positions
since faster-moving robots should proportionally increase
the frequency of position broadcasting so that the infor-
mation received by the other robots would not be too
sparse for making decisions.

6 Proposed Coordination Methods

The three proposed methods are composed of two steps. In
the first step, the developed Cross-rank is determined for
all waypoints W that are known to the particular robot.
The first step is identical to all three variants of the Cross-
rank-based methods. However, in the second step, the next
exploration waypoint is selected from the waypoints with
the lowest Cross-rank based on the potential to spread the
robots using true/approximated distances (Spread-rank)
or a solution of the TSP instance. The steps are further
detailed in the following parts of the section.

6.1 First Step: Cross-Rank Computation

The Cross-rank assigns non-negative integer Gi,cross for
each ith waypoint wi ∈ W. The set of all n robots R is
split into the actual robot r, for which the rank is being
computed, and the set of the remaining n−1 robots R′ =
R \ {r}. The Cross-rank is designed to spread the robots
at the crossroads uniformly by penalizing waypoints that
are close to the locations visited by the other robots R′.

Under unreliable communication, there can be areas
with sparse information about other robots. Hence, the
robot’s traveled path is approximated by line segments
connecting the received robot’s positions; see Fig. 4. For
the robot r, such a polyline is used to establish a corridor

Robot 1 deciding which  waypoint
should be followed next

Robot 2 exploring the area

Waypoint w1

Waypoint w2

Positions received by
Robot 1 from Robot 2

Field based on the
received positions

Fig. 4 An illustrative example where Robot 1 decides which way-
point should be selected next. Based on the term Gi,cross, Robot 1
selects to follow waypoint w1 because waypoint w2 is closer to the
estimated path of Robot 2 than mr distance. The path of Robot 2 is
estimated using the positions received by Robot 1. In the figure, the
space closer than mr to the estimated path of Robot 2 is visualized
by the red field. Note that some messages containing the position of
Robot 2 might be lost or delayed. Thus, the distance between posi-
tions received by Robot 1 from Robot 2 varies.

along the robot’s path using a distance threshold mr rep-
resenting an area that is considered visited by r. For each
robot r′k ∈ R′, there is an ordered set of received posi-
tions Hk and the Cross-rank Gi,cross for the waypoint wi

is computed as

Gi,cross =
n−1∑
k=1

gcross(pi,Hk), (6)

where gcross(pi,Hk) is

gcross(pi,Hk)



1 if |Hk| > 1 and

mr > dlseg (pi, s(k,pi))

1 if |Hk| == 1 and

mr >∥ pi − hk,1 ∥
hk,1 ∈ Hk

0 Otherwise

.

(7)
In (7), the function dlseg(a,b) measures distance

between the position a, and line segment b, pi is the posi-
tion of the ith waypoint, and the function s(k,pi) is to
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Fig. 5 Visualization of the Cross-rank computation for a line seg-
ment formed between two consecutive positions hk,l and hk,l+1

received from the robot r′k. The Cross-rank of the waypoint w1 is
increased since it is closer than rm to the line segment representing
the traveled path of another robot. On the other hand, the Cross-
rank of the waypoint w2 is not increased since w2 is further than rm
from the line segment.

find the closest line segment from the kth robot to the
position pi, such that

s(k,pi) = argmin
hk,lhk,l+1 for hk,lhk,l+1∈Hk

dlseg(pi, hk,lhk,l+1),

(8)
where hk,lhk,l+1 denotes line segment connecting hk,l and
hk,l+1. The thresholding parameter mr limits the distance
from the line segments at which Cross-ranks of waypoints
are increased; see Fig. 5. Suitable threshold mr values
have been analyzed empirically. The value of mr should
always be higher than half of the robot’s largest diame-
ter and always smaller than the sensory range. For all the
robots in the team, the value of mr is the same since we
assume identical sensory systems. Furthermore, for sub-
terranean environments, the suitable value of mr should
be set between half of the tunnel width and the dis-
tance between tunnel entrances at the crossroads if these
parameters are known.

The proposed Cross-rank can be implemented in multi-
ple ways depending on the frequency of the shared robots’
positions. The Cross-rank uses dlseg(a,b) to compute the
distance to a line segment since known locations of other
robots can be far from each other because of unreliable
communication, or fast motions of the robots. Suppose
the positions are received frequently and reliably. In that
case, the computation of the distance to a line segment
can be simplified to the determination of the distance to
the closest position of another robot.

The distance to the closest point calculation or deter-
mination of the closest segment requires finding the
nearest neighbors, which can be implemented naively.
However, in large exploration scenarios, robots might
receive thousands or even tens of thousands of positions
from other robots during the mission. Therefore, we rec-
ommend employing more sophisticated implementations,
such as the FLANN library (Muja and Lowe, 2014).

6.2 Second Step: Waypoint Selection

Since the Cross-rank assesses all the possible exploration
waypoints by a non-negative integer, the next exploration
waypoint is selected using the proposed Spread-rank
(methods CRESRp and CRSRm,p) or as the first waypoint
of the solution of the TSP instance to visit all the way-
points. The Cross-rank assessed waypoints are combined
into the set Wcr from which the next waypoint is selected
as follows.

Robot exploring left part of the
environment

Robot deciding which waypoint should
be followed next
Possible exploration waypoint w1
Possible exploration waypoint w2

Fig. 6 A robot (in blue) decides where to explore next, while
another robot explores the left part of the environment. Thus, based
on the term Gi,Spread only, the robot selects the waypoint w2, which
is farther from the area being explored by the other robot, marked
by a brown color.

Spread-rankGi,Spread is designed to get the rth robot
as far from the other robots as possible based on the most
recent positions of the robots. The ranking is inspired by
the MinPos (Bautin et al, 2012) that counts how many of
the robotsR′ have a shorter path to the ith waypoint than
the actual robot r. The proposed ranking further takes
into account ratios of distances between the waypoints
and the robots. The idea of the Spread-rank Gi,Spread is
visualized in Fig. 6 and it is computed as

Gi,Spread =
n−1∑
k=1

Cr,i

Ck,i
, (9)

where Cr,i is the distance between the position of the robot
that is making the decision and the ith waypoint that is
being ranked, Ck,i is the distance between the kth robot
from R′ and the ith waypoint.
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The calculation of Ck,i requires sharing maps between
the robots and Spread-rank using Ck,i is implemented
in the proposed method CRSRm,p. However, under low
bandwidth communication, detailed maps for the compu-
tation of shortest paths might not be available. Therefore,
we propose CRESRp where the path lengths Cr,i and Ck,i

are approximated by Euclidean distances, which does not
require sharing maps between the robots.

The resulting next exploration waypoint is selected
as the waypoint from the set Wcr with the lowest rank
Gi,Spread. If multiple waypoints have the lowest Spread-
rank, the resulting waypoint is selected based on the path
length from the waypoint to the current position of the
robot.

Finally, we propose to evaluate waypoint selection
based on solving an instance of the TSP (Kulich et al,
2011) to visit waypoints Wcr. The method is denoted
CRTSPp, and since it uses the TSP on Wcr waypoints
instead of Gi,Spread with path lengths to other robots, it
does not require sharing maps and waypoints between the
robots.

6.3 Computational Complexity

The computational complexity of determining the Cross-
rank and Spread-rank is proportional to all the received
positions from the robots R′ stored in the sets Hk, which
grow over the mission. Therefore, the growth is decreased
by using a spatial filter, which outputs a new robot
position only if the robot has moved far enough from
the previous location. Furthermore, the computational
requirements are impacted by computing paths between
the robots’ positions and waypoints.

When compared with the most similar ranking-based
approach MinPosm,w,p(1), its complexity is proportional
to the number of robots n and the determination of the
path lengths from the robots to the waypoints. Thus, also
in the MinPosm,w,p, the actual computational require-
ments depend on the particular course of the mission.
Since we avoid sharing maps using Euclidean distances
in the proposed CRESRp, it further reduces the com-
putational burden. In all evaluated scenarios reported
in the following section, the MinPosm,w,p is significantly
more demanding than the proposed Cross-rank combined
with the Spread-rank using Euclidean distances of the
CRESRp.

7 Results

The performance of the nine selected existing methods
and three proposed decentralized multi-robot coordina-
tion methods has been empirically evaluated in simulation
environments that are reported in Section 7.1. Besides, the
proposed Cross-rank-based coordination has been exper-
imentally deployed with a real multi-robot system using
three quadruped robots. The experimental results are pre-
sented in Section 7.2. A discussion of the reported results
is presented in Section 8. The parameterization of the
employed autonomous navigation stack is listed in Table 1.
The proposed Cross-rank methods are parameterized with
mr = 1.5m and mr = 5.0m for the simulated and
real-world deployments, respectively.

7.1 Results in Simulated Environments

All 12 coordination methods, as listed in Section 5,
are qualitatively evaluated in five testing environments
depicted in Fig. 7. The focus is on teams with 3 and 5
robots selected w.r.t. the size of the environments based on
the practical deployment experience (Bayer et al, 2023).
Besides, we further include scalability analyses using 7
and 9 robots in Section 7.1.4, the impact of the localiza-
tion error on the exploration performance in Section 7.1.5,
and using heterogeneous robots in Section 7.1.6.

The five different environments, each with the robots’
starting location, define evaluation scenarios designed to
force the coordination methods for a significant number of
decisions, supporting the relevance of the results. Robots
need to travel hundreds of kilometers to explore all rel-
atively large environments multiple times. Therefore, the
simulation setup is set to simulate the robot’s motion, its
collisions with the environment, and its primary LiDAR
sensor. The robot motion is simulated using a kinematic
unicycle model (Luca et al, 2005), where applied for-
ward and angular velocities are affected by 5% simulation
random error drawn from a normal distribution.

The reflections of the LiDARs from the environment
are simulated by raycasting LiDAR rays to 3D models of
the environment. The 3D models of the environments are
built based on the outlines shown in Fig. 7. The sensory
noise of the LiDAR is based on the parameters of the
Ouster OS0 LiDARs (Ouster OS0, accessed Jan 11, 2024)
and experiments with a real device. An example of the
simulated LiDAR data produced based on a 3D scene is
visualized in Fig. 8.

The selected environments are based on the scenarios
used in the virtual circuits of the DARPA SubT Challenge
and two systems circuits, namely in the Urban and Final
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(a) S1: 150m × 327m (b) S2: 184m × 292m

(c) S3: 116m × 86m

(d) S4: 117m × 126m (e) S5: 161m × 105m

Fig. 7 The environments used for the simulation trials and their
sizes. The red areas indicate the initial positions of the robots.

circuits, here denoted as S3 and S5 scenarios, respectively.
For each environment, two scenarios are evaluated with 3

Fig. 8 Scan from a simulated model of the omnidirectional Ouster
OS0-32 LiDAR with 32 layers (beams) and noise in the range mea-
surements.

and 5 deployed robots. In each scenario, the robots’ start-
ing area is defined, shown as the red area in Fig. 7. The
robots are deployed from the starting area with 15 s delay.

Note that the robots’ poses are provided directly by
the simulator instead of the localization system from the
navigation stack described in Section 4. It saves com-
putational requirements and also ensures that evaluation
is focused on coordination and not on the performance
of the localization system. However, the simulation still
includes a certain level of randomness induced by simu-
lated sensory noise and imprecision in executing control
actions. Therefore, each scenario is repeated five times,
and 12 · 5 · 5 · 2 = 600 evaluation trials were run in total.

By the described simplifications, a simulation real-time
factor of 100% is achieved while still having sufficient
computational resources to run all components of the
considered autonomous navigation systems. Nevertheless,
running all the simulation trials took approximately two
weeks with computational resources consisting of four
Intel i7-10710U computers, each with 32GB RAM run-
ning simulations scenarios with three robots, and AMD
Ryzen R5 3600 with 32GB RAM running simulations with
five robots.

The methods are evaluated using the performance
indicators described in Section 3.1. The evaluation results
w.r.t. the individual performance indicators are presented
in Sections 7.1.1, 7.1.2, and 7.1.3, which are followed by
scalability analysis, localization error impact study, and
influence of heterogeneous robots.

7.1.1 Evaluation Results: Exploration Time

Evaluation results on the average required time tavg to
explore the environments are depicted in Table 3. In
the presentation of the results, we consider the meth-
ods ordering according to the Time-performance score
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denoted TP score. The score is calculated as the num-
ber of times any other methods have outperformed the
given method for all 12 methods, 5 environments, 2 sizes of
robotics teams, and 5 repetitions. For example, the score
9 indicates that in 9 cases, other methods performed with
shorter tavg in the respective scenarios. Thus, a lower TP
score means better overall performance.

Table 3 Average exploration time and TP score

Exploration
Time required to explore scenario tavg [s] TP

strategy
3 robots 5 robots Score

S1 S2 S3 S1 S2 S3 [-]

MTSPm,w,p 2577 1265 537 1732 872 381 9

MinPosm,w,p 2542 1201 572 1771 873 408 10

Hunm,w,p 2566 1288 566 1790 788 421 14

Closestm,w 2715 1278 634 1965 930 465 31

TSPm,w 3195 1299 581 2210 1033 463 48

CRSRm,p 3158 1466 670 2379 1178 517 52

CRTSPp 3569 1584 640 2398 983 520 61

CRESRp 3142 1554 648 2726 1184 589 65

ETSPm,w 3180 1451 668 2610 1204 468 70

Closest 5069 2283 1060 3812 1791 722 96

TSP 6085 2859 713 5118 2504 596 98

ETSP 7632 2485 868 6220 2044 697 106

TP score is computed from all the scenarios with 3 and 5 robots in all
S1–S5 environments. Detailed results for all scenarios with standard
deviations are in Table 8.

From the results, we can see a significant perfor-
mance gap (according to TP score) between the three
best-performing methods: MTSPm,w,p, MinPosm,w,p, and
Hunm,w,p and the rest of the methods. It is because the

methods use shared maps and compute optimal task allo-
cation or a given decision moment using a heuristic MTSP
solution, ranking, and the optimal Hungarian algorithm,
respectively. Relatively good performance can be observed
for Closestm,w, which outperforms even more sophisti-
cated methods TSPm,w and ETSPm,w. The largest cluster
of methods with TP score between 48 and 70 contains
TSPm,w, CRSRm,p, CRTSPp, CRESRp, and ETSPm,w.
From these five methods, ETSPm,w provides the highest
TP score, so it performs the worst. The proposed meth-
ods CRTSPp and CRESRp are based on the Cross-rank
with the lowest amount of data used for the coordina-
tion. Nevertheless, the three worst-performing methods do
not share any information for coordination, which justifies
that at least some information exchange is desirable.

7.1.2 Evaluation Results: Traveled Distance

The distance traveled by the robots is summarized in
Table 4. The results reflect the time performance from
Table 3, showing that the methods that explore the envi-
ronments fastest also lead to the lowest traveled distances.
It is mainly caused by using the same navigation stack for
all exploration methods, yielding a similar average velocity
of the robots.

The results suggest that the three best-performing
methods require all types of sharable data: robot posi-
tions, potential exploration waypoints, and map updates.
Table 4 includes the total distance traveled, which further
indicates how efficiently the robots in the team are used
to explore the environment. The total traveled distance

Table 4 The distance traveled in the exploration scenarios with n robots in the team

Exploration
Average maximum path length lavg,sum [km] Total distance traveled

strategy
n = 3 n = 5 lsum [km]

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 n = 3 n = 5 Total

MTSPm,w,p 2.82 1.30 0.56 0.55 0.55 1.89 0.96 0.39 0.39 0.38 85 96 181

MinPosm,w,p 2.78 1.32 0.59 0.49 0.51 1.93 0.95 0.43 0.40 0.42 84 99 183

Hunm,w,p 2.80 1.42 0.58 0.56 0.56 1.95 0.86 0.43 0.42 0.39 87 98 185

Closestm,w 2.98 1.41 0.65 0.63 0.59 2.15 1.02 0.48 0.47 0.40 92 109 201

TSPm,w 3.50 1.34 0.60 0.76 0.63 2.41 1.16 0.48 0.51 0.53 101 123 224

CRSRm,p 3.47 1.60 0.68 0.72 0.57 2.61 1.29 0.53 0.55 0.50 104 132 236

CRTSPp 3.94 1.75 0.66 0.79 0.64 2.64 1.09 0.54 0.57 0.47 115 128 243

CRESRp 3.48 1.71 0.66 0.74 0.68 3.02 1.31 0.61 0.56 0.52 107 145 252

ETSPm,w 3.53 1.64 0.69 0.82 0.71 2.93 1.37 0.50 0.59 0.55 109 142 252

Closest 5.54 2.50 1.09 1.00 1.07 4.18 1.95 0.74 0.71 0.83 165 205 370

TSP 6.65 2.99 0.74 0.99 0.98 5.63 2.73 0.62 0.79 0.86 183 259 442

ETSP 8.50 2.80 0.90 1.31 1.45 6.93 2.32 0.72 1.42 1.24 221 309 530

Methods are ordered according to the total distance traveled depicted in the last column, which, however, corresponds to the order according to the TP score
listed in Table 3.
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for scenarios with three robots by all methods is about
1455 km, and 1844 km for five robots, which is almost
3300 km in total.

7.1.3 Evaluation Results: Coverage Progress

The average coverage of the robots for each method is
summarized in Table 5. The last table’s column shows the
difference between the average coverage using three and
five robots, indicating how well the method can exploit
two more robots, where a higher value suggests improved
utilization of the robots. Although the highest difference
is for Closest, its overall performance suggests that robot
coverage is highly overlapping compared with the best-
performing methods, with about fifty percentage points of
coverage per robot. More robots also significantly improve
the performance of the proposed CRTSPp. It is also worth
noting that the three best-performing methods based on
the TP score still benefit from more robots; however,
the overall coverage is similar for them. Visualization of
the taken robots’ decisions, areas covered, and coverage
overlap is depicted in Fig. 18 and Fig. 19.

Table 5 The average percentage of the environment
covered by a robot of the team with n robots

Exploration Coverage – covn [%]

strategy n = 3 n = 5 Diff. cov3 − cov5

MTSPm,w,p 50 38 12

MinPosm,w,p 48 40 9

Hunm,w,p 51 39 13

Closestm,w 54 43 11

TSPm,w 56 47 9

CRSRm,p 52 42 10

CRTSPp 56 41 15

CRESRp 50 41 9

ETSPm,w 58 49 9

Closest 82 64 18

TSP 83 74 10

ETSP 83 75 8

The average coverage aggregated from all the scenarios and
trials. Detailed results are depicted in Table 9.

The coverage progress of the individual robots in
the exploration of the S1 environment using CRESRp is
depicted in Fig. 9. The total coverage curve between 250 s
and 600 s is slightly flat because Robot 2 and Robot 3 are
exploring the same area already explored by Robot 1. The
coverage progress of MTSPm,w,p in the same environment
is depicted in Fig. 10. From the plots, we can observe
that the total coverage is increasing more consistently for

Fig. 9 Coverage progress during the exploration of S1 using the
proposed CRESRp method with three robots.

Fig. 10 Coverage progress during the exploration of S1 using the
MTSPm,w,p coordination method with three robots.

MTSPm,w,p with map update sharing. For both meth-
ods CRESRp and MTSPm,w,p, a detailed analysis of their
behavior is provided in Appendix A, more specifically in
Fig. 17 and Fig. 16.

7.1.4 Scalability Analysis

In addition to 3 and 5 robots, we analyze the perfor-
mance of the exploration using 7 and 9 robots. The
environments S1, S3, and S4, representing different envi-
ronmental types, have been considered in the simulations
conducted similarly to the previous ones. All the robots
are identical; they start from the same location with 15 s
delays. Each simulation was repeated five times, result-
ing in 12 · 5 · 3 · 2 = 360 simulated exploration missions.
The performance is measured by the average exploration
time that is normalized using the shortest exploration time
tnorm for three robots (n = 3) to show improvements using
more robots. The increased number of robots increases
computational demands, and therefore, the computational
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Fig. 11 Normalized average exploration times in S1, S3, and S4 environments using a team of n robots for n ∈ {3, 5, 7, 9}. The exploration
times are normalized by the shortest exploration time with n = 3, which is achieved by MinPosm,w,p, MTSPm,w,p, and MinPosm,w,p for S1,
S3, and S4, respectively. The box denotes the average value, and the error bars denote the standard deviation.

environment consists of the Intel i9-14900K with 128GB
RAM to achieve the 100% real-time factor for up to nine
robots.

The normalized average exploration times are sum-
marized in Fig. 11. The plots suggest that the first five
methods benefit from the increased team size and can
exploit more robots; however, differences between 7 and 9
robots are marginal. The proposed methods and ETSPm,w

generally benefit from increasing the team size.
Noticeable differences can be observed when consid-

ering particular environments. In the relatively large S1,

one of the three best-performing methods MTSPm,w,p,
MinPosm,w,p, Hunm,w,p is always a better choice than
Closestm,w, see Fig. 11a. On the other hand, in S4, which
is less than half the size of S1, the three best-performing
methods and Closestm,w perform similarly when the num-
ber of robots is sufficiently increased, see Fig. 11b. For S3,
the plot in Fig. 11c shows that Closestm,w is outperformed
by TSPm,w. It is primarily due to relatively large open
areas in S3, where exploring waypoints ordered based on
solving TSPm,w yields a more efficient exploration strat-
egy than using the greedy method Closestm,w. A similar
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phenomenon can also be observed in the proposed meth-
ods. Specifically, in S3, CRTSPp with the employed TSP
performs better than CRSRm,p and CRESRp.

The three worst-performing methods, Closest, TSP,
and ETSP, exhibit a trend of decreasing average explo-
ration time with increasing team size; however, they are,
in general, the worst choice for any studied n.

7.1.5 Localization Error Impact Study

The proposed coordination methods have been further
studied to determine the impact of the localization drift
that can cause inconsistencies in the shared data between
the robots. The localization drift is simulated as an
(x, y, z) position error, calculated as a percentage of the
distance traveled from the initial position of the robot.
The position error is added to a direction that is randomly
generated at the beginning of the mission. Hence, the
localization error is increasing over the mission duration,
and each position of the robot shared with the other robots
is affected by the position error, simulating localization
drift that affects other robots.

We include the Closest and TSP methods in the study
because they do not share any data; hence, there is no
observable impact. Since the methods continue to explore
the environment, if reachable exploration waypoints are
determined, they avoid incomplete exploration when maps
are incorrectly merged because these methods do not use
any shared maps of the other robots. However, the pro-
posed CRTSPp and CRESRp methods rely on the shared
positions of the robots, and therefore, an impact on the
exploration time is expected. The methods that use shared
map data have to deal with map inconsistencies, which
is a challenging problem itself, and it would indeed yield
degraded performance. Therefore, they are not included
in the evaluation.

The localization error impact is studied for the local-
ization drifts 0.5%, 1.0%, 1.5%, 2.0%, and 2.5%; each
for three exploration trials in the S4 environment with
5 robots. The normalized average exploration times are
depicted in Fig. 12. Closest and TSP are independent
of localization drift since the methods do not exchange
data. For CRTSPp and CRESRp, increasing exploration
time can be observed for the drifts above 0.5%, which
cause accumulated error above the parameter mr. Up
to the drift 1.5%, the proposed methods perform bet-
ter than the reference ones. Note that, for such a drift,
the absolute localization error is about 10m at the end
of the exploration missions, which is significantly more
than mr, as robots traveled around 560m on average.
Thus, 1.5% drift prolongs the exploration mission to
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Fig. 12 Normalized average exploration times of the proposed
methods under the simulated localization drift in the environment S4
using n = 5 robots. The normalization is by the shortest exploration
time without the localization drift that is achieved by the proposed
CRTSPp. The boxes represent the average values, and the error bars
denote the standard deviation among the performed trials.

about 672m. A similar issue with localization error is
also expected for the methods using the shared maps,
which would yield inconsistencies in the merged maps.
Hence, methods that share less data should be preferred
for missions with a high localization error. However, when
the error is below the Cross-rank parameter mr used for
accounting waypoints near the crossroads, the proposed
CRTSPp and CRESRp methods outperform localization
drift-independent Closest and TSP. Further study on the
robustness of coordination methods to localization errors
is out of the paper’s scope.

7.1.6 Heterogeneous Robots

The final evaluation in the simulated exploration mis-
sions is on the influence of the heterogeneous robots in
the team using robots with different maximum speeds.
The evaluation scenarios are adjusted to have three robots
with the original maximum speed set to 1.2m s−1 and
two additional slower robots with 0.6m s−1. Hence, we
can expect a shorter exploration time with five heteroge-
neous robots than with three robots, yet still slower than
five fast robots. The average exploration times for the S3
and S4 environments are depicted in Table 6, where the
time for the heterogeneous team is denoted as “Heter.”
and results for n = 3 and n = 5 are from Table 8. The
reported average times are computed from five trials.

The results indicate the expected slight decrease in
the exploration time for most of the methods. However,
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Table 6 Average exploration time with heterogeneous robots

Exploration
Time required to explore scenario tavg

strategy
S3 S4

n = 3 Heter. n = 5 n = 3 Heter. n = 5

MTSPm,w,p 537 513 381 537 461 381

MinPosm,w,p 572 485 408 484 442 408

Hunm,w,p 566 466 421 533 446 421

Closestm,w 634 541 465 602 454 465

TSPm,w 581 513 463 719 479 463

CRSRm,p 670 618 517 701 627 517

CRTSPp 640 628 520 766 646 520

CRESRp 648 671 589 710 653 589

ETSPm,w 668 562 468 783 620 468

Closest 1060 758 722 979 906 722

TSP 713 679 596 955 858 596

ETSP 868 972 697 1247 1169 697

CRESRp performs worse with heterogeneous robots in S3
than with three fast robots. It is primarily caused by the
fact that when two robots, one fast and one slow, enter
two corridors from a crossroad, the Cross-rank is calcu-
lated as if the robots have the same speed. As a result, the
slow robots unnecessarily discourage the fast robots from
exploring parts of the environment that would require
more robots. The limitation highlights opportunities for
future improvements to the proposed Cross-rank, such as
weighting by the average speed of the robots.

7.2 Real-world Deployment

The proposed CRESRp Cross-rank coordination method
has been experimentally verified in an outdoor environ-
ment with three quadruped robots. The method has low
communication requirements and can operate even under
a relatively narrow bandwidth limited to broadcasting
100B s−1. The experimental environment is visualized in
Fig. 13, showing a complete 3D point cloud map created
from the locally collected maps by the robots after the
mission ended.

Fig. 13 3D point cloud map of the explored environment created
from the local maps of the robots after the mission ended. The area
is approximately 100m× 85m.

Fig. 14 One of the deployed quadruped robots used in the real-
world experiment.

All the robots are identical quadruped platforms, Spot
by Boston Dynamics, equipped with a custom payload
as depicted in Fig. 14. The main part of the payload is
the computational unit with the Intel NUC10i7FNK with
the Intel i7-10710U processor and 32GB RAM dedicated
to robot localization and running autonomous naviga-
tion and multi-robot coordination. The sensor used is
the Ouster OS0-128 LiDAR with 128 lines and 1024
measurements per line running at 10Hz. Communication
between the robots is provided by the communication
modules working at frequency 868/915MHz, which rep-
resents a low-bandwidth communication channel (Bayer
et al, 2023).

Fig. 15 Map of the environment explored by three quadruped
robots. The size of the shown squared grid cell corresponds to 10m.

The testing environment with the indicated initial
location of the robots is shown in Fig. 15. The robots start
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from the house garage marked as the start area. The
nearby forest creates most of the outline of the explorable
environment. The rest of the outline is defined by the bor-
der of the operational area marked in Fig. 15 to keep the
robots from the nearby road and small parking lot near
the house.

Table 7 Traveled distances and pack loss ratio in the
real-world exploration

Robot
Distance Packet Loss Ratio† [%]

Traveled [m] Spot 1 Spot 2 Spot 3

Spot 1 223.4 - 82 69

Spot 2 225.3 83 - 91

Spot 3 175.7 47 78 -

†The loss ratio is determined from the packets sent from the
particular robot. The exchanged data fit a single packet.

The whole experiment took 575 s, during which each
robot broadcasted its positions at the frequency of 1Hz.
The distance traveled by the robots is listed in Table 7
together with the relatively low reliability of the delivered
messages, which highlights the benefits of decentralized
coordination methods.

During the mission, Spot 1 started the exploration,
and after it avoided a small wall, it continued to explore
the right part of the environment from the start. Spot 2
was sent approx. 30 s after Spot 1 and decided to explore
the opposite part of the environment than the first robot.
Finally, approx. 45 s after Spot 2, Spot 3 started to
explore the remaining parts of the environment. The paths
traversed by the robots are visualized in Fig. 15. The per-
formed real-world experiment supports the feasibility of
the proposed method in coordinating real robots in an
outdoor scenario, where the robots suffer from imprecise
measurements and localization, imperfect execution of the
actions, and unreliable communication capable of receiv-
ing only about 25% of the transmitting position data for
coordination.

8 Discussion

Based on the reported results, the proposed coordination
methods using the Cross-rank successfully led the robots
to the least visited areas at the crossroads. The Cross-
rank performs best in combination with the Spread-rank
that uses the path lengths in CRSRm,p, albeit it does
not fulfill the bandwidth requirements. The performance
slightly decreases with approximate path lengths using
Euclidean distances of CRESRp. However, the method

fulfills the bandwidth requirements and provides slightly
better results for exploration scenarios with three robots
than CRTSPp. The proposed CRTSPp performs better
than CRESRp in scenarios with five robots. Both proposed
methods CRESRp and CRTSPp show to be a suitable
choice when low-bandwidth communication is the only
suitable option. In real-world experimental deployment,
the real system suffers from limited communication with
the average packet loss of about 75%; see Table 7. Despite
the imperfect communication, the proposed Cross-rank
method successfully handles the robot distribution in the
operational area as depicted in Fig. 15.

Moreover, when analyzing the impact of the localiza-
tion drift, the results in Fig. 12 indicate that the proposed
CRTSPp and CRESRp perform better in the environment
S4 than methods that do not share any information. The
improved performance is noticeable even for the localiza-
tion drift 1.5%. For the drift above that value, the shared
data becomes too noisy, damaging the coordination.

The overall best-performing methods are MTSPm,w,p,
MinPosm,w,p, and Hunm,w,p, which share maps, way-
points, and positions between the robots. Sharing maps
is too communication-demanding w.r.t. the motivational
scenario involving low-bandwidth communication only.
The real bandwidth requirements of these methods can
further increase in more open areas. Based on the pre-
sented evaluation results, increased performance is at the
cost of increased bandwidth requirements. The exception
is the ETSPm,w method with the required map updates,
which is outperformed by the proposed CRESRp and
CRTSPp, both with lower bandwidth requirements.

When considering computational requirements, the
best performance-to-computational-demand ratio has
Closestm,w with performance just behind the best three
performing methods and has the second-lowest computa-
tional requirements. Note that, when considering TSP-
based methods, decreasing computational requirements by
replacing the computation of real distances between the
waypoints with Euclidean distances results in a signifi-
cant decrease in performance for the environments S1,
S2, S4, and S5, where Euclidean distance poorly approx-
imates path lengths between the locations. On the other
hand, when the space being explored contains primarily
sparse obstacles or open areas, like the environment S3,
such an approximation is less damaging to exploration
performance, especially for robot teams larger than three.

Exploration using TSP-based Strategies

The presented results suggest high-performance variations
in TSP-based strategies, which, in general, assume that
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path lengths between the waypoints are known and that
the robot is going to visit the waypoints in the order of
the TSP solution. The performance decreases when vio-
lating the assumptions. In decentralized exploration, the
assumption of visiting the waypoints in the determined
order may not hold because robots uncover new parts of
the environment, leading to new waypoints, or another
robot might cover the waypoint of the first robot’s route.
The violation of the assumptions can be decreased by clus-
tering the waypoints, such as in MTSPm,w,p, to keep the
robots from visiting other robots’ waypoints. Another way
is to limit the planning horizon by limiting the length
of the routes, e.g., by splitting waypoints between more
robots or planning the TSP route only for a subset of
possible exploration waypoints.

The effect of decreased performance can be observed
for TSPm,w that is outperformed by Closestm,w. If we
further utilize Euclidean distances between the waypoints
instead of path lengths, performance further decreases,
which can be observed when comparing TSPm,w and
ETSPm,w. Similarly, without any information exchange,
the Closest method performs better than TSP and ETSP.
Therefore, data sharing helps to improve the exploration
performance; however, when communication is limited,
the proposed Cross-rank method is a more suitable choice
than methods that do not share anything, including the
Closest method.

Limitations of the proposed method

Since the coordination is based on the shared positions
between the robots, the Cross-rank’s bandwidth require-
ments depend on the speed at which the robots move. In
simulations, the robots move at speeds up to 1.2m s−1 and
share positions at fpositions = 5Hz, which also accounts
for unreliable communication; thus, it can be lowered,
possibly to 1Hz, as during the real-world experiment.
However, if the robots move more than five times faster,
or the frequency of sharing positions is less than 1Hz,
the performance of the Cross-rank would start degrad-
ing, because the distance between the shared positions
would start becoming too large to cover sharp turns. The
limitation can be overcome by increasing the frequency
of sharing positions between the robots proportionally to
the increased speed of the robots; thus, more bandwidth
would be needed.

The proposed method is also limited w.r.t. the used
localization system. Based on assumptions in Section 3,
the localization system must provide positions of all robots
w.r.t. a common coordinate frame. Moreover, based on
the reported empirical results, when the localization drift

exceeds 1.5%, the performance of the proposed method
decreases below the level of independently exploring
robots.

When the assumptions outlined in Section 3 are not
fulfilled, the coordination performance may also decrease.
For example, when robots are capable of moving at differ-
ent speeds (the team of robots is not homogeneous), the
performance of method CRESRp decreases, as shown in
Section 7.1.6.

9 Conclusion

The presented evaluation results of multi-robot explo-
ration strategies in relatively large-scale environments
show that the performance of the methods is strongly
related to the communication bandwidth used. The three
best-performing methods MTSPm,w,p, MinPosm,w,p, and
Hunm,w,p share all considered data types: map updates,
exploration waypoints, and robots’ positions. Besides,
addressing multi-robot exploration by the solution of the
TSP or Euclidean TSP instances independently for each
robot demonstrates that it is less effective than greedy
exploration, in both cases, with and without the map
updates shared between the robots. The proposed Cross-
rank method performed worse than the best-performing
methods that require the sharing of waypoints and map
updates. However, it performs best when the bandwidth
is limited to only sharing the robots’ positions. Finally,
the real-world experimental deployment further supports
the practical feasibility of the proposed method in out-
door exploration with three robots connected using only
a low-bandwidth and relatively unreliable communica-
tion system. The performance of the method could be
improved by sharing maps between the robots if the
communication bandwidth allows that. Nevertheless, the
benefit of the proposed method is in communication-
restricted setups or when a high number of robots limits
achievable communication bandwidth.

In future work, we would like to extend the calcula-
tion of the Cross-rank to account for different robot speeds
to improve performance when coordinating heterogeneous
teams of robots. Moreover, we would like to increase the
resistance of the proposed coordination method to the
localization drift by matching the shapes of the robot’s
trajectories.
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A Appendix
Detailed results on the coordination methods CRESRp and MTSPm,w,p are depicted in Fig. 17 and Fig. 16, respec-
tively. Besides, full results of the exploration time and coverage are presented in Table 8 and Table 9, respectively, for
completeness. Moreover, robots’ paths are visualized in Fig. 18 and Fig. 19 for exploration of the environment S1 with
three and five robots, respectively.

(a) 104 s (b) 272 s (c) 474 s (d) 850 s

(e) 1824 s (f) 2037 s (g) 2240 s (h) 2444 s

Fig. 16 Evolution of the exploration using MTSPm,w,p in the environment S1 with three robots in the first evaluation trial. The figures
show the poses and paths of each robot and shared waypoints assigned by clustering from the perspective of Robot 1 (red robot) to all three
robots. At the first crossroad, MTSPm,w,p spreads the robots to different corridors; see Fig. 16a. From Fig. 16b, we can see that the red and
green robots left Area 1 before it was fully explored, and the rest of the exploration of the area was left to the orange robot, which saved
a significant amount of time in comparison to, e.g., CRESRp method. Then, the clustering splits the robots into mostly disjoint areas; see
Fig. 16c and Fig. 16d. At 1824 s from the mission start, the red and green robots are finishing the upper part of the environment, and they
are returning to explore the rest of Area 4, see Fig. 16f. When the red and green robots finished exploring Area 4, see Fig. 16g, they moved
together to the last unexplored area, where the orange robot was already exploring, which can be observed from Fig. 16c. In Fig. 16h, we
can further see how all the robots are exploring the remaining parts of the last area. Here, we can see an advantage of sharing waypoints and
maps between the robots since robots can then move very efficiently to the remaining parts of the environment. The coverage by each robot
and the joined coverage increase during the trial are shown in Fig. 10.
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(a) 122 s (b) 638 s (c) 772 s (d) 2000 s

(e) 2278 s (f) 2584 s (g) 2969 s (h) 3155 s

Fig. 17 Evolution of the exploration using CRESRp in the environment S1 with three robots in the first evaluation trial. The figures show
the poses, paths, and exploration waypoints detected by each robot. At the first crossroad, depicted in Fig. 17a, the robots select different
corridors. Next, the red robot finds its way out of Area 1, marked in Fig. 17b, and starts exploring the rest of the environment. Because
the red robot explored the only way out of Area 1 before the Cross-rank of the waypoints corresponding to the way out was the lowest, the
orange and green robots explored most of Area 1 before they left it. The observed behavior of the Cross-rank is induced by the fact that the
robots do not share exploration waypoints. Next, when the green and orange robots leave Area 1, they start exploring Area 2 and Area 3,
which are bounded by the corridors that are already explored by the red robot, see Fig. 17c, and Fig. 17d. The green robot finishes exploring
the area bounded by the corridors explored by the red robot approximately 2278 s after the mission starts; see Fig. 17e. Then, the green
robot starts exploring parts of the environment for waypoints with a high value of the Cross-rank, which have already been explored by the
red robot. About 2585 s after the mission started, the red and orange robots are still exploring unique areas of the environment; see Fig. 17f.
Next, the red robot finishes exploring waypoints with a value of the Cross-rank equal to 0 and starts exploring waypoints with high ranks,
which leads to exploring already visited corridors, which is shown in Fig. 17g. The whole environment is explored when the orange robot
explores its last two waypoints with the zero value of the Cross-rank, which are the two closest waypoints to the robot’s location, shown in
Fig. 17h. The coverage by each robot and the joined coverage increasing during the trial are shown in Fig. 9.
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Table 8 Average time required to explore environments S1–S5 with three and five robots. The methods are sorted based on the TP score
calculated from all the scenarios.

Exploration
Average time required to explore the scenario tavg [s] TP

strategy
3 robots 5 robots score

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 [-]

MTSPm,w,p 2577±55 1265±75 537±25 537±39 541±68 1732±112 872±121 381±36 384±19 372±13 9

MinPosm,w,p 2542±47 1201±32 572±24 484±27 493±36 1771±60 873±22 408±41 397±21 410±14 10

Hunm,w,p 2566±30 1288±84 566±11 533±16 534±46 1790±81 788±73 421±42 418±45 377±23 14

Closestm,w 2715±132 1278±73 634±53 602±132 552±73 1965±105 930±89 465±58 462±63 388±33 31

TSPm,w 3195±270 1299±105 581±35 719±97 591±83 2210±224 1033±88 463±31 491±48 508±49 48

CRSRm,p 3158±234 1466±189 670±34 701±86 541±55 2379±273 1178±108 517±53 546±34 476±35 52

CRTSPp 3569±543 1584±207 640±84 766±110 604±68 2398±182 983±100 520±87 554±38 443±51 61

CRESRp 3142±330 1554±136 648±74 710±91 640±55 2726±333 1184±93 589±77 564±49 490±88 65

ETSPm,w 3180±277 1451±143 668±156 783±84 679±141 2610±176 1204±283 468±68 566±68 515±71 70

Closest 5069±931 2283±379 1060±267 979±123 1026±129 3812±546 1791±112 722±77 714±174 803±116 96

TSP 6085±214 2859±114 713±123 955±215 921±152 5118±866 2504±226 596±73 766±151 805±129 98

ETSP 7632±545 2485±415 868±262 1247±327 1367±138 6220±855 2044±219 697±77 1374±407 1174±82 106

(a) MTSPm,w,p (b) MinPosm,w,p (c) Hunm,w,p (d) Closestm,w (e) TSPm,w (f) CRSRm,p

(g) CRTSPp (h) CRESRp (i) ETSPm,w (j) Closest (k) TSP (l) ETSP

Fig. 18 Paths of the robots taken from the exploration with three robots in the environment S1 (first trial out of five).
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Table 9 Evaluation of the exploration performance based on the average percentage of the environment covered by the individual robot

Average coverage cavg [%]

Exploration 3 robots 5 robots

strategy S1 S2 S3 S4 S5 All S1 S2 S3 S4 S5 All

MTSPm,w,p 45±2 48±4 51±1 56±5 51±6 50 33±3 38±4 40±5 42±3 39±1 38

MinPosm,w,p 42±2 46±1 53±3 51±5 49±4 48 33±2 37±1 41±3 43±4 44±3 40

Hunm,w,p 43±1 52±3 52±1 55±4 54±6 51 34±2 34±4 42±5 44±5 40±2 39

Closestm,w 46±4 52±3 57±6 60±9 57±9 54 37±3 42±4 47±5 49±6 42±4 43

TSPm,w 57±6 49±5 54±5 68±9 53±8 56 40±5 46±2 46±4 54±5 50±3 47

CRSRm,p 48±4 50±6 53±2 59±5 49±5 51 37±3 39±3 44±3 47±3 41±2 42

CRTSPp 55±8 56±6 55±6 62±5 51±7 56 38±2 36±3 45±6 46±3 40±3 41

CRESRp 45±4 51±4 50±3 52±6 53±4 50 38±4 39±3 44±2 43±2 40±3 41

ETSPm,w 49±3 56±5 59±13 69±10 56±6 58 44±3 53±10 44±5 52±8 49±9 49

Closest 78±12 75±11 79±17 90±6 88±7 82 60±7 62±4 57±3 68±14 73±11 64

TSP 93±2 94±2 63±11 84±14 84±10 83 78±12 87±5 53±5 75±13 75±7 74

ETSP 93±4 83±11 70±16 73±10 95±1 83 80±8 70±9 58±5 81±11 87±6 75

(a) MTSPm,w,p (b) MinPosm,w,p (c) Hunm,w,p (d) Closestm,w (e) TSPm,w (f) CRSRm,p

(g) CRTSPp (h) CRESRp (i) ETSPm,w (j) Closest (k) TSP (l) ETSP

Fig. 19 Paths of the robots taken from the exploration with five robots in the environment S1 (first trial out of five).
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