
Code-based Design for Consistent Prototyping, Manufacture and
Physical Modeling of Multimodal Robots

Martin Zoula Jan Faigl

Abstract— The paper introduces build123things, a soft-
ware tool for consistent robot design, manufacturing, and
physical modeling. It is motivated by designing robotic systems
with multimodal locomotion that require multiple simulation
models to evaluate their motion capabilities using multimodal
planning techniques. The tool uses a Hierarchical Assembly
Graph and an algorithm to select the kinematic root, leveraging
the Code-CAD library build123d and the OpenCASCADE
geometry kernel. It employs explicit reference geometries to
overcome the Topological Naming Problem (TNP) of existing
mainstream Computer Aided Design (CAD) systems relying on
implicit geometry element naming. Rich material annotations
and assembly semantics enable use across design, simulation,
and manufacturing, narrowing the sim-to-real gap. Its usage
is demonstrated in a robotic arm design and a climbing
magnetic robot case study, where build123things supports
multimodal planning by implementing kinematic hierarchy
transforms.

I. INTRODUCTION

Robotic system design transforms conceptual ideas into
digital models that can be validated in simulation, manufac-
tured into prototypes, and, in turn, a complete production
design. It involves assembling modeled components, aided
by Computer Aided Engineering (CAE) software that inte-
grates geometry creation, design management, mechanical
and operating simulation, and manufacturing procedures [1].
Current research in CAE already focuses on numerous spe-
cialized problems, such as trustworthiness and traceability
of design interchange [2], domain-specific design [3], or
machining code optimization [4], to name a few here.

Articulated mobile robots, like humanoids or crawling
systems, present simulation and manufacturing challenges
due to their complexity and multimodal locomotion. These
robots can use varying traction modes, such as leg switch-
ing in hexapod walkers [5] or acrobatic flight phases in
humanoids [6]. Our focus, in particular, is on the inchworm-
like magnetic robot MInchW, which moves by gripping iron
beams or slithering as illustrated in Fig. 1. We explore
flexible design approaches enabling multimodal planning [7],
model-based control [8], and digital twin integration [9].

Besides, we also aim to address the Topological Nam-
ing Problem (TNP). Mainstream graphical Computer Aided
Design (CAD) systems rely on implicit geometry naming,

The authors are with the Faculty of Electrical Engineering, Czech
Technical University, Technická 2, 166 27, Prague, Czech Republic
{zoulamar|faiglj}@fel.cvut.cz

The work has been supported by the Technology Agency of the Czech
Republic under the project No. TN02000028 and by the European Union
under the project ROBOPROX - Robotics and advanced industrial produc-
tion (reg. no. CZ.02.01.01/00/22 008/0004590).

(a) (b)

(c)

Fig. 1. Example locomotion modes of the MInchW robot designed in the
proposed build123things system. Clockwise from top left: (a) rigidly
attached (dry friction) by the “front” leg, (b) by the “rear” leg, and (c)
crawling on the ground. As the robot is not perfectly symmetric, different
physical model formulations are suitable for each such mode.

making them suffer from the TNP, where subsequent pro-
cedures lose geometric reference upon parameter change,
which is not yet adequately solved [10]. Hence, the resulting
designs are prone to various quality issues like syntactical
and semantical errors, resulting in the loss of reference
geometry elements [11].

Code-CAD (CC) offers a text-based alternative to graph-
ical CAD, using commands to define geometry through
Constructive Solid Geometry (CSG) [12]. The CC approach
ensures unambiguous, transparent design steps, treating the
user as a design programmer. However, existing CC solutions
lack systematic reference geometry support. Among existing
systems, the build123d [13] is a Python library, expos-
ing the OpenCASCADE Boundary Representation (B-REP)
geometric kernel [14] in a suitable object-oriented fashion.

We extend [13] into build123things software library
to support multimodal robotic design while mitigating the
TNP. The key contributions are as follows.

1) We propose a methodology to consistently derive robot
physical models for particular locomotion modes to
support subsequent planning or simulation tasks.

2) We propose mitigation of the TNP by explicit reference
geometry management based on the CC approach.

3) We provide an implementation of the above, with clear
syntax and semantics, and model parameter manage-
ment. We demonstrate the usage in a case study of the
MInchW robot illustrated in Fig. 2.

The rest of the paper is organized as follows. The overview
of the existing CC solutions and robotic planning is sum-
marized in the following section. Section III introduces our
proposed library on an example of a serial manipulator
design. A case study on a magnetic climbing robotic system
design is in Section IV. The paper is concluded in Section V.

class Robot (Thing):
↪→ def __init__(self, length:float, a, b) -> None:
↪→↪→ super().__init__(material=PETG())
↪→↪→ # Def. mount point by xyz [mm] and rpy [deg]
↪→↪→ self.leg_front = MountPoint(Location(

(length, 0, 0), (0, 0, -90)))
↪→↪→ # Attach with DoF by naming mating mounts
↪→↪→ Revolute(self.leg_front, LegAssembly.mount)
↪→↪→ # Define unambiguous reference geometry
↪→↪→ self.groundplane = fillet(Rectanlge(a, b),3)

Fig. 2. An example of the assembled physical robot MInchW and an
example of a robot definition in the proposed build123things Code-
CAD (CC) system.

II. RELATED WORK

Modern manufacturing relies on digital product manage-
ment throughout the product lifecycle, aligning with Indus-
try 4.0 goals [15] of automation. Rapid prototyping benefits
from rich, annotated data for early flaw detection [16].
Although advanced CAD systems support the lifecycle [11],
a gap remains in supporting mobile articulated robotics.

Two geometry paradigms are used in CAD systems:
Constructive Solid Geometry (CSG), which builds shapes
from primitives using boolean operations [12], and Boundary
Representation (B-REP), which defines shapes via their
bounding manifolds. Both support parametric design, where
the resulting geometry is computed based on limited input
parameters. While CSG geometric kernel implementation,
such as CGAL [17], encode shapes as anonymous meshes,
B-REP kernels, such as OpenCASCADE [14], preserve the
geometric semantics, making it preferable for detailed access
to the object geometry and topological entities.

The Topological Naming Problem (TNP) arises when
even small changes in defining parameters alter or remove
resulting geometry, making consistent reference difficult.
Since geometry naming is important for user experience [18],
it is addressed by heuristics in existing graphical CAD
systems; however, it lacks a complete solution [10]. In rigid
component assembly, relative positions can be defined by
constraint satisfaction programming [19] or directly specified
by the designer. These relations form a Hierarchical As-
sembly Graph (HAG), a directed acyclic graph where nodes
represent components and edges define “subcomponent-of”
relations, enabling automated assembly planning and execu-
tion for manufacturing [20].

A. Existing Code-CAD (CC) Systems and Libraries

We briefly review existing Code-CAD (CC) sys-
tems to contextualize our proposed approach. The On-
shape CAD system [21] introduces domain-specific lan-
guage lacking object-oriented features. TinkerCAD [22] and

BlocksCAD [23] use Scratch-style [24] graphical program-
ming. FreeCAD enables bidirectional programming [25] in
interactive Python sessions to expose geometry manipula-
tion, allowing linking geometry source code and its visu-
alization [18]. Curv [26] uses a custom functional repre-
sentation approach to the geometry kernel. JSCAD [27]
uses JavaScript to implement the CSG paradigm, while
ImplictCAD [28] implements a custom geometric kernel
in the Haskell language. Besides, field-specific CC systems
exist, such as Paramak [29] and STOK-A [30] for tokamak
geometry generation, or TiGL [31] for aircraft design with
advanced surface modeling.

OpenSCAD [32] uses a custom functional language based
on the CSG paradigm with support for parametrized mod-
ules. However, global variable declarations limit flexibility,
they lack object annotations, and geometry referencing re-
quires duplication. Assemblies rely on basic parametrization
without joint semantics, limiting kinematic analysis. Despite
the drawbacks, it is found suitable for math and science
education [33].

OpenCASCADE-based FreeCAD, with its Python inter-
face, raised a family of Python-based CC solutions. The
build123d library recently evolved from CadQuery [34],
exposing the kernel in a concise, fully object-oriented manner
furnished with a rich Python interface. Similarly to the CC
systems, the library exposes constructive operations without
robust reference geometry handling. Still, we opted to use
build123d as a modeling backbone for the proposed
library as it best fits our needs.

B. Code-CAD for Robotics

Beyond simulation and visualization, high-fidelity robot
models are essential for machine learning [35] and model-
based control [8]. For example, Chignoli et al. [6] demon-
strated a humanoid robot with three (acrobatic) control
modes (takeoff, flight, and landing), each requiring a dis-
tinct dynamic model. Multimodal planning is shown for
a humanoid navigating zero gravity using varying grip con-
figurations, with each mode representing a different set of
constraints on the robot’s movement [7]. Here, a mode is
defined as a partially constrained robot configuration.

Similarly, our MInchW robot can operate in three locomo-
tion modes: two resembling fixed-base serial manipulators
and one as a floating-based system for slithering. Mode
transitions, including slippage, remain open challenges. Us-
ing the proposed build123things, we transform the
mechanical design into different simulation setups in Mu-
JoCo [8], demonstrating how the developed system stream-
lines the otherwise manual process required for multimodal
planning with complex robots.

III. ROBOT DESIGN IN THE DEVELOPED CODE-CAD
BUILD123THINGS LIBRARY

The developed build123things library follows the
Code-CAD principles, where designers define the geome-
try and assemblies using a programming language. In the
build123things, as an extension to the build123d,

Start with Initial Specification.Write a new
Thing subclass

Is current
level-of-detail sufficient?

Identify semantic or
kinematic components.

Is the geometry available,
e.g., in STEP?

Import the design,
assign as result method.

Explicitly annotate reference geometries, mount
points, materials, etc. as attributes.

Define the design in build123d
as the result method.

Simulate and
Manufacture

Yes. No.

Subclass the Things that need to
be adjusted. Use identified values
of component parameters.

Recursively create the
component. (Go to start.)

Component defined
as a Thing already?

For each such component...

Import the component as
Thing.

No.

No.
Yes.

Yes.

Satisfied?

Done.

No.

Yes.

Post-design.

Primary design.

Export, e.g., into MuJoCo
simulation definition fmt.

Attach the component to
suitable mount point.

All components
defined.

Subassembly
design.

Fig. 3. The suggested design workflow with the proposed library.

Python is used, and designers define all designs as subclasses
of the proposed Thing class. Each such subclass represents
a parametric family of mechanical parts or (sub)assemblies,
collectively called components. The family parameters map
to the arguments of the constructor, the init method in
Python. Instantiating such components implies a hierarchical
assembly of immutable geometries. Once components and
their assemblies are defined, the model can be exported
for further simulation-based validation and manufacturing,
e.g., using 3D printing. The suggested design workflow is
summarized in Fig. 3.

Fig. 4. The robotic manipulator created with the proposed library. Black
blocks denote the Dynamixel XM-430 servomotors linked by white 3D-
printable fixures, with the end effector being a dummy pen for drawing.

In the rest of the section, the build123things library
is introduced by an exemplar design of a robotic manipulator
with 4 Degrees of Freedom (DoF) in yaw-pitch-pitch-pitch
configuration. The manipulator, depicted in Fig. 4, can reach
a point in a plane while maintaining the angle of attack
of a pen to draw. The presented example also serves as
a demonstration of possible build123things usage in
educational tasks, as the manipulator is fully 3D-printable.

A. Component Design

A component design is introduced by the example of
the blue pen in Fig. 4, an elementary component in our
manipulator. It is defined as a partially rounded cylinder of

length l and diameter d, joined with a translated cone. The
component family code can look as follows.

class PenDummy(Thing):
↪→ def __init__(self, l = 100.0, d = 15):
↪→↪→ super().__init__(PETG(Color(.1, .1, .9, 0)))
↪→↪→ self.body = fillet(Cylinder(l, d/2) ...) +

Location(...) * Cone(d/2, 0, l/10)
↪→↪→ self.groundplane = Circle(d/2)
↪→ def result(self): return self.body

In the object initialization, the component is furnished with
the reference geometries (attr. groundplane), expressed
with respect to (w.r.t.) the component’s implicit reference
frame. Further, each component declares its authoritative
geometrical representation in the result method as the
geometry or None in the case of pure assemblies.

Fig. 5. End Effector (EE) is made of a white L-shaped fixture. The Ω-
shaped cap (red) holds the pen (blue) in between; both components are
subassemblies of the EE. The servomotor model (black) is a reference
object (not part of the EE assembly). The green screws are servomotor
subcomponents, translated to the EE reference frame using the expression
syntax to extrude holes in the created fixture precisely.

The EE component is to attach the defined pen to the rotor
of the Dynamixel XM-430 servomotor with an L-shaped
fixture screwed to the rotor and fastened by an Ω-shaped
cap, see Fig. 5. In the constructor init , we can use an
existing library model of the servomotor and place it in the
local reference frame for further reference by assigning it as
an attribute.

self.servo_ref= XM430().move(Location(...)) # black

The library handles component movement symbolically via
the TransformResolver object. The moved object is
wrapped in TransformResolver, hijacking the attribute
access to transform attribute values to the current local
reference frame automatically. The language-level expression
maps to the spatial transformation as illustrated by the green
screw in Fig. 5 and is defined as follows.

self.servo_ref.screw_right_bottom_front(5) # green

Note, the build123d offers a selector logic to access
topological faces or vertices of a geometry. However, relying
on such features is prone to the TNP as there is generally
no guarantee about the selection result or ordering. Hence,
we suggest defining reference geometries as original entities
dependent directly on input parameters to mitigate the TNP.
A designer may create reference geometry by assigning ar-
bitrary attributes except for the following reserved attributes.

• The parameters attribute stores values passed to
init , facilitating the adjust functionality.

• The material attribute defines appearance and
mechanical properties of the result.

• The mass, volume, and matrix of inertia
methods determine respective quantities.

The servomotor is used to define a sweeping curve and to
cut openings for screws in the fixture. The sweep operation
may be ill-conditioned (geometry kernel error), or the result
might collide with the servomotor while rotating (semantic
error). Such risks are prevented by language features like
the assert or try statements, encapsulating the invalid
parameter handling in the class.
assert thick > 0 and lngth > servo_ref.rotor_radius
curve = Polyline(self.servo_ref...position, ...

position + Vector(0, cl, 0), ...) # tmp val
profile = ... * Rectangle(self.servo_ref.p.

rotor_radius_1 * 2 + thickness * 2, ...) # tmp
try: self.body = sweep(profile, curve, transition=

ROUND) + extrude(Circle(...),...) # ref val

The cap component is defined similarly and rigidly at-
tached to the EE. Matching screw holes are subtracted using
the expression transform.
body -= self.cap_pen.screw_2.body_hull

Finally, the EE declares a mount point to attach to the robot.
self.mount = MountPoint(self.servo_ref.rotor_center

.location * MOUNTING_LOCATION)

Existing model definitions may be altered in two ways.
First, subclassing may reduce or change the component
family parameter space. Hence, designers can favor generic
designs from which specialized cases are derived. The second
method is cloning a component instance using adjust
while changing the named parameters. Thus, one may obtain,
e.g., a slightly bigger version of the servomotor to facilitate
clearances that account for manufacturing inaccuracy.
xm430_with_clearance = XM430().adjust(

rotor_radius_2__add = 0.2,
width__add = 0.2, height__add = 0.2)

The design process can be summarized as using the language
and library features to define the result and reference geome-
tries in a salient way that is robust to parameter change.

B. Manipulator Assembly

The manipulator itself comprises a base link with yaw-
motion servomotor, shoulder-link, humerus-link, forearm-
link, and EE. Following the concept of hierarchical assembly,
each named component is defined as a subassembly of the
previous ones. For instance, the shoulder link’s init can
be defined as follows.
Fixture to rigidly bind yaw and 1st pitch servos.
self.connector = MountPoint(bd.Location())
Rigid(self.connector, Connector_Yaw_Pitch().origin)
1st pitch servo, part of shoulder assembly.
self.servo = MountPoint(self.connector.

servo_pitch_mount)
Rigid(self.servo, XM430().top)
Subassembly with all links up to end effector.
self.humerus = MountPoint(self.servo.rotor_center)
self.joint = Revolute(self.humerus, LinkHumerus().

mount_by_braces)
self.joint.set(42) # Joint handle sets joint transf
Shoulder may be mounted to base yaw servo.
self.base = MntPoint(slf.connector.servo_yaw_mount)

The MountPoint-type attribute defines an auxiliary
reference frame F w.r.t. the implicit component reference

frame. Henceforth, AbstractJoint instance (such as
Rigid(...) or Revolute(...)) symbolically aligns
components A and B by their respective mount points,
adding an arbitrary, possibly parametrized, intermediate joint
transformation TJ . Formally, the alignment is read as

TAB = Fn−1 ×FA × TJ × T⊺ ×F−1
B ,

where Fn−1 accumulates the transformation from expression
evaluation, and T⊺ is the fixed transformation with the
rotation defined by Euler angles (180◦, 0◦, 90◦), and zero
translation. The fixed transformation aligns the z-axes of the
reference frames parallel but opposing, constituting a stan-
dardized way of the mount points orientation compatible
with other conventions like the Denavit-Hartenberg notation.
Both symbols T and F may be interpreted as homogeneous
coordinate transforms. The designer may enjoy expression-
transformer semantics for the reference placement as the
attribute access uses the TransformResolver object; see
illustration depicted in Fig. 6.

component_A
<Thing>, self

component_B
<Thing>

component_A.mount_point_A
<MountPoint>,

component_B.mount_point_B
<MountPoint>,

<AbstractJoint>,

component_A.reference_geometry_B

component_A.reference_geometry_B
component_B.reference_geometry_D

 <TransformResolver>,

component_B.reference_geometry_C

reference_geometry_C_in_self_reference_frame =
self.mount_point_A.reference_geometry_C

Fig. 6. Two components arranged via AbstractJoint and respec-
tive MountPoints. An expression-transform (in green and below di-
agram) yields a TransformResolver that ultimately interprets the
reference geometry C w.r.t. the implicit frame of component A.

Mount points distinguish a single outbound or multiple
inbound assembly slots. Hence, they define the Hierarchi-
cal Assembly Graph (HAG) where components are nodes
and edges are determined implicitly by investigating which
mount points are actually occupied with AbstractJoint
instances. Thing instance memoization ensures that each
component family instance is stored in the memory only
once, making the design analysis easy. Extensible opera-
tions on assemblies are supported via the walk enumerator
method, implementing HAG traversal with optional heed
for hierarchy. Such operations include exporting procedures,
visualizing the HAG using the graphviz library [36], or
preparing the mjcf MuJoCo [8] model description files.

Complete manipulator code and more examples are part of
the library [37]. Note that the current library implementation
is not performance-optimized, sacrificing computation speed
to implement the required features and validate the proposed
solution. As opposed to the integrated CAD philosophy
advocated in [1], the proposed library is a modular software
supporting robust data interchange. At the current state, the
library validates the proposal for ease of CC-based designs.
The library’s core module comprises around 1000 code lines
and around five-fold when including miscellaneous code.

IV. CASE STUDY ON MAGNETIC CRAWLER ROBOT

The proposed library was used to design and prototype
the MInchW robot intended to inspect iron structures. The
robot is equipped with two coil-regulated permanent magnets
with the nominal pull of 300N and actuated by six Robotis
Dynamixel X-series servomotors. Power can be drawn from
six built-in 18650 Lithium-ion cells, promising over an hour
of uptime. The resulting robot weights 2.08 kg and spans
48.5 cm. The illustration of the robot assembly is depicted in
Fig. 2, and a simplified Hierarchical Assembly Graph (HAG)
of the final assembly is visualized in Fig. 7. The final robot
prototype is shown in Fig. 2.

Rigid
joints

ankle

brace_left

ChasisBay

MInchW

XM430

Brace

LegAssembly

brace_right

bay

le
g_
fro

nt

le
g_
re
ar

servo_front

servo_rear

servo

Br
ac
ke
tR
ot
or
Bo

dy

LegAnkle

left_bracket
right_bracket

Gripper

gripper

XM540Se
lo
sE

PP
M
35
29

m
ag
ne
t

se
rv
o

CrossBracket

cross_bracket

Revolute
jointsThings

Fig. 7. The Hierarchical Assembly Graph (HAG) of the MInchW robot,
without the electronics and fasteners. Nodes (rectangles) identify a compo-
nent used in the final robot assembly. Edges represent the “is-subassembly-
of” relation between components. Each edge represents a local spatial
transformation that aligns the two components by specifying particular
mount points.

The root element of the primary design is the middle sec-
tion of the robot (the grey body in Fig. 8), while the legs are
attached relative to the root as sub-assemblies with their local

0 100 200 300 400 500

0.0

0.2

0.4

τ
[N

m
] Roll

Pitch

Yaw

Fig. 8. Default kinematic structure used to simulate rigid attachment via
the “weld” constraint (top) includes parasite dynamics (bottom) that require
around 500 simulation steps to settle.

Fig. 9. Transforming the kinematic representation by selecting the
kinematic root in the environment-attachment point leads to an equivalent
of a serial manipulator and allows using standard, efficient inverse dynamics
solvers. Our proposed system is able to perform such a kinematics transform.

hierarchy. Turning the hierarchy directly into a simulation
model is useful for the wiggling locomotion mode (Fig. 1c),
where the central robot element acts as a free body with ar-
ticulated legs. Simulating iron-attached locomotion requires
rigidly fixing a magnet in space. With the original kinematic
hierarchy, it can be done using soft constraints, such as
the “weld” constraint in MuJoCo. However, such constraints
introduce parasite model dynamics, requiring hundreds of
simulation steps to settle a static simulation scenario; see the
plot in Fig. 8. The build123things enables automatic
reformulation of the kinematic tree by selecting a root in the
attachment location, enabling solving forces and dynamics of
the attached robot with a single standard inverse dynamics
computation as illustrated in Fig. 9.

Both cases were simulated in the MuJoCo [8]; the
build123things provided a XML file with the robot
structure and complementary STL mesh files. The file was
then included in another file that defined the simulation
parameters and scene. Hence, we are able to produce a set
of consistent MInchW dynamic models, each suitable for
a particular operating configuration or the so-called mode
in the sense of multimodal planning [7].

The design comprises 26 large components, omitting fas-
teners like screws, cables, and electronics. We also used
build123things to generate STL files as a basis for
Fused Deposition Modeling manufacturing; such an op-
eration took, using the non-optimized implementation of
the build123things, about 15 s on the Intel Core i7-
10700 processor and about 412MB of memory. During rapid
prototyping, some of the parts turned out to be of different
weights than initially anticipated, specifically the 3D printed
parts with low infill. It is addressed by subclassing respective
Things and overriding weight or inertia attributes as sum-
marized in Fig. 3. Hence, the build123things exporter
produces a consistent dynamic model for the MuJoCo [8]
software by expanding the native hierarchical assembly.

Future work: Based on experience with the developed
build123things and regarding the related work, the
possible future work is summarized as follows. The open
fundamental feature is the representation of the internal com-
ponent structure as indicated in [12], which affects modeling
fidelity. We identified a need to seamlessly represent the
variable level of detail where both detailed designs with small
components like screws or discrete electronic parts may be

efficiently kept alongside the macroscopic designs involving
only compound rigid bodies with enumerated matrices of
inertia. The library currently lacks features like non-HAG
assemblies, generalized part interfaces, tolerance analysis,
and measurement unit analysis. Assembly cycle detection
and verification of the referencing geometries through joints
are also desirable features.

V. CONCLUSION

We present build123things, a novel Code-CAD li-
brary suitable not only for designing articulated mobile
robots with multimodal locomotion. It mitigates the Topo-
logical Naming Problem through explicit reference geometry
naming and supports a hierarchical assembly model with
explicit joint semantics and rich annotations. Components are
easily parametrized in Python, and models can be exported
for simulators with flexible kinematic root selection to enable
multimodal planning. The library usage and its efficiency
are demonstrated in the MInchW robot case study. Besides,
as a text-based system, build123things supports stan-
dard version control. It advances Code-CAD by integrating
robust design semantics, mitigating the Topological Naming
Problem, and implementing proven yet overlooked principles
absent in similar systems. Additionally, arbitrary kinematic
root rebasing enables seamless model export for robotic
simulators, supporting multimodal planning and validating
diverse locomotion modes.

REFERENCES

[1] U. Rembold and R. Dillmann, Eds., Computer-Aided Design and
Manufacturing, 2nd ed., ser. Symbolic Computation. Springer, 1986.

[2] T. Hedberg Jr., M. Helu, S. Krima, and A. Barnard Feeney,
“Recommendations on ensuring traceability and trustworthiness of
manufacturing-related data,” National Institute of Standards and Tech-
nology (NIST), Tech. Rep., 2020.

[3] X. Dai and Y. Hong, “Fabric mechanical parameters for 3D cloth
simulation in apparel CAD: A systematic review,” Computer-Aided
Design, vol. 167, p. 103638, 2024.

[4] R. B. Käsemodel, A. F. de Souza, R. Voigt, I. Basso, and A. R.
Rodrigues, “CAD/CAM interfaced algorithm reduces cutting force,
roughness, and machining time in free-form milling,” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 107, no.
3–4, p. 1883–1900, 2020.

[5] P. Čı́žek, M. Zoula, and J. Faigl, “Design, construction, and rough-
terrain locomotion control of novel hexapod walking robot with four
degrees of freedom per leg,” IEEE Access, vol. 9, pp. 17 866–17 881,
2021.

[6] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The MIT
humanoid robot: Design, motion planning, and control for acrobatic
behaviors,” in 2020 IEEE-RAS 20th International Conference on
Humanoid Robots (Humanoids), 2021, pp. 1–8.

[7] Z. Kingston and L. E. Kavraki, “Scaling multimodal planning: Using
experience and informing discrete search,” IEEE Transactions on
Robotics, vol. 39, no. 1, pp. 128–146, 2023.

[8] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine
for model-based control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 5026–5033.

[9] F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, “Digital twin modeling,”
Journal of Manufacturing Systems, vol. 64, pp. 372–389, 2022.

[10] S. H. Farjana and S. Han, “Mechanisms of persistent identification of
topological entities in CAD systems: A review,” Alexandria Engineer-
ing Journal, vol. 57, no. 4, pp. 2837–2849, 2018.

[11] C. González-Lluch, P. Company, M. Contero, J. D. Camba, and
R. Plumed, “A survey on 3D CAD model quality assurance and testing
tools,” Computer-Aided Design, vol. 83, pp. 64–79, 2017.

[12] C. D. Toth, J. O’Rourke, and J. E. Goodman, Eds., Handbook of dis-
crete and computational geometry, 3rd ed., ser. Discrete Mathematics
and Its Applications. Productivity Press, 2017.

[13] R. Maitland, “build124d,” cited on 2025-05-02. [Online]. Available:
https://github.com/gumyr/build123d

[14] “OpenCASCADE Technology,” cited on 2025-02-02. [Online].
Available: https://dev.opencascade.org/doc/overview/html/index.html

[15] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & Information Systems Engineering, vol. 6, no. 4, p.
239–242, Jun. 2014.

[16] A. Matta, D. R. Raju, and K. Suman, “The integration of CAD/CAM
and rapid prototyping in product development: A review,” Materials
Today: Proceedings, vol. 2, no. 4–5, pp. 3438–3445, 2015.

[17] H. Brönnimann, A. Fabri, G.-J. Giezeman, S. Hert, M. Hoffmann,
L. Kettner, S. Pion, and S. Schirra, “2D and 3D linear
geometry kernel,” in CGAL User and Reference Manual. CGAL
Editorial Board, 2023, cited on 2024-02-29. [Online]. Available:
https://doc.cgal.org/5.6/Manual/packages.html#PkgKernel23

[18] A. Mathur, M. Pirron, and D. Zufferey, “Interactive programming for
parametric CAD,” in Computer graphics forum, vol. 39, no. 6. Wiley
Online Library, 2020, pp. 408–425.

[19] R. Sodhi and J. U. Turner, “Towards modelling of assemblies for
product design,” Computer-Aided Design, vol. 26, no. 2, pp. 85–97,
1994.

[20] Y. Pane, M. H. Arbo, E. Aertbeliën, and W. Decré, “A system ar-
chitecture for CAD-based robotic assembly with sensor-based skills,”
IEEE Transactions on Automation Science and Engineering, vol. 17,
no. 3, pp. 1237–1249, 2020.

[21] “FeatureScript introduction,” cited on 2024-02-02. [Online]. Available:
https://cad.onshape.com/FsDoc/

[22] “Codeblocks – Tinkercad,” cited on 2024-02-02. [Online]. Available:
https://www.tinkercad.com/codeblocks

[23] “BlocksCAD,” cited on 2024-02-02. [Online]. Available: https:
//www.blockscad3d.com/editor/

[24] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The Scratch programming language and environment,” ACM Trans-
actions on Computating Education, vol. 10, no. 4, nov 2010.

[25] J. F. Gonzalez, D. Kieken, T. Pietrzak, A. Girouard, and G. Casiez, “In-
troducing bidirectional programming in constructive solid geometry-
based CAD,” in ACM Symposium on Spatial User Interaction, 2023,
pp. 1–12.

[26] “doug-moen/curv: a language for making art using mathematics,” cited
on 2024-02-15. [Online]. Available: https://codeberg.org/doug-moen/
curv

[27] “JSCAD – JavaScript CAD,” cited on 2024-01-23. [Online]. Available:
https://github.com/jscad/OpenJSCAD.org

[28] “ImplictCAD.org,” cited on 2024-01-23. [Online]. Available: https:
//implicitcad.org/

[29] J. Shimwell, J. Billingsley, R. Delaporte-Mathurin, D. Morbey,
M. Bluteau, P. Shriwise, and A. Davis, “The Paramak: auto-
mated parametric geometry construction for fusion reactor designs.”
F1000Research, vol. 10, no. 27, 2021.

[30] A. Gabrijel and A. Čufar, “STOK-A tool for parametric modeling of
simple tokamaks,” in International Conference Nuclear Energy for
New Europe, 2022, pp. 1008.1–1008.10.

[31] M. Siggel, J. Kleinert, T. Stollenwerk, and R. Maierl, “TiGL: An open
source computational geometry library for parametric aircraft design,”
Mathematics in Computer Science, vol. 13, no. 3, p. 367–389, 2019.

[32] “OpenSCAD – The Programmers Solid 3D CAD Modeller,” cited on
2024-02-02. [Online]. Available: https://openscad.org

[33] J. Horvath and R. Cameron, 3D Printed Science Projects Volume 1:
Ideas for Your Classroom, Science Fair, or Home. Apress, 2024.

[34] “CadQuery/cadquery: A python parametric CAD scripting framework
based on OCCT,” cited on 2024-03-12. [Online]. Available:
https://github.com/CadQuery/cadquery

[35] A. Plaat, W. Kosters, and M. Preuss, “High-accuracy model-based re-
inforcement learning, a survey,” Artificial Intelligence Review, vol. 56,
no. 9, p. 9541–9573, Feb. 2023.

[36] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software: Practice and
Experience, vol. 30, no. 11, pp. 1203–1233, 2000.

[37] “The build123things Repository,” cited on 2024-09-12. [Online].
Available: https://github.com/zoulamar/build123things

https://github.com/gumyr/build123d
https://dev.opencascade.org/doc/overview/html/index.html
https://doc.cgal.org/5.6/Manual/packages.html#PkgKernel23
https://cad.onshape.com/FsDoc/
https://www.tinkercad.com/codeblocks
https://www.blockscad3d.com/editor/
https://www.blockscad3d.com/editor/
https://codeberg.org/doug-moen/curv
https://codeberg.org/doug-moen/curv
https://github.com/jscad/OpenJSCAD.org
https://implicitcad.org/
https://implicitcad.org/
https://openscad.org
https://github.com/CadQuery/cadquery
https://github.com/zoulamar/build123things

