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Abstract— The paper studies lower bounds on the optimal so-
lution of the shortest path connecting a sequence of regions with
the presence of obstacles. For disk-shaped regions, a straight-
forward bound can be based on relaxing the obstacles and using
Euclidean distance between the disks or the Second Order Cone
Programming (SOCP). However, such lower bounds would be
poor if regions are mutually close but reachable by relatively
long detours, avoiding the obstacles. Therefore, we analyze the
two-disk shortest path problem with three possible cases and
use the path in lower bound estimation called TriCase. We
show TriCase is a tighter lower bound than using Euclidean
and SOCP-based approaches for specific instances. Based on
the evaluation results, we propose to combine TriCase and
SOCP approaches to determine the lower bound on the shortest
path connecting disk-shaped regions in environments with
polygonal obstacles. The lower bound is further employed in
assessing the quality of a feasible sampling-based solution to
the touring regions problem, supporting the viability of the
proposed approach for routing problems with neighborhoods
and the presence of polygonal obstacles.

I. INTRODUCTION

The studied problem is motivated by routing problems in
the polygonal domain [1], [2] to connect regions by shortest
path avoiding obstacles [3], [4], which is an underlying
problem of various robotic applications [5]. In particular,
we focus on finding a tight lower bound solution of the
shortest path among obstacles connecting a given sequence
of disk-shaped regions [6], modeling sensing ranges in data-
collection tasks [7]. Since we study disk-shaped regions, we
call the problem the Touring Regions Problem with Obstacles
(TRPO) to distinguish it from the Touring Polygons Problem
(TPP) [8] already studied for more than two decades. The
TPP is to find the shortest path visiting a sequence of polygo-
nal regions, and it is studied for instances without obstacles
with several available approximation algorithms [9], [10],
[11]. However, the problem is NP-hard [8], [12] in general.

The TPP is studied for specific types of regions [10],
such as convex bodies [13]. A recently published work on
disjoint disks [14] demonstrates that the TPP is actively
studied from the foundational perspective. Besides, the prob-
lem formulation is motivated by practical applications of
remote data collection [15], where further challenges are
related to finding the shortest path among obstacles in the
environment [16].
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The TPP with Obstacles (TPPO) is addressed in [17] using
a discretization schema with the gradient descent algorithm
and the mixed-integer program with grid-partitioning to
obtain locally optimal solutions and upper bounds on optimal
solutions, respectively. The approach depends on the dis-
cretization density and grid size, and it scales poorly with the
number of regions. A recent work on routing problems with
obstacles is a solution of the Hampered Traveling Salesman
Problem with Neighborhoods (H-TSPN) introduced in [6].
The H-TSPN is a routing problem with disk-shaped target
regions and obstacles considered as a single segment. The
problem is addressed by finding the shortest paths between
two disk-shaped regions among segment barriers using a vis-
ibility graph. However, only instances with target regions
that are not fully visible to each other are addressed, which
allows the authors to assume disks and polygonal barriers
are second-order cone representable [6].

In the present work, we propose to generalize the short-
est path between two disk regions in environments with
polygonal obstacles into three possible cases. The shortest
path is employed to determine a lower-bound solution of
the TRPO. Since it is based on three cases, as depicted in
Fig. 1, the lower bound is referred to as TriCase. Lower
bound estimates are essential for solving routing problems
when using branch-and-bound techniques [18]. Therefore,
we further relax obstacles and determine the lower bound
using the Euclidean distance between the disks, regardless
of the obstacles. Besides, the optimization model of the
Second Order Cone Programming (SOCP) formulating the
continuous problem is employed for the whole disk sequence
without accounting for the obstacles.

Based on the empirical evaluation, the TriCase lower
bound provides tighter bounds than the SOCP in scenarios
with mutually close target regions but with the shortest path
connecting them with significant detours to avoid obstacles.
Hence, a combined lower bound is proposed for the quality
assessment of feasible solutions to the TRPO determined by
sampling-based methods. The evaluation results for solving
test instances with and without overlapping regions demon-
strate the viability of the presented approach. The contribu-
tions of the presented work are considered as follows.

o Analysis of the shortest path between two disk-shaped

regions in the environment with polygonal obstacles.

o TriCase lower bound solution to the TRPO with disk

regions based on the shortest path between two disks.

o The combined lower bound solution to the TRPO based

on the proposed TriCase and SOCP formulation of the
TRPO without obstacles.
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(a) Case 1: Visible disks.
Fig. 1.

o Empirical evaluation on lower bound solutions and

feasible solutions using sampling-based method.

The remainder of the paper is organized as follows. The
studied TRPO is formally introduced in Section II. The
analysis of the shortest paths between two disks is presented
in Section III, and lower-bound methods are outlined in
Section IV. Evaluation results are presented in Section V,
and concluding remarks are in Section VI

II. PROBLEM STATEMENT

The studied Touring Regions Problem with Obstacles
(TRPO) is to find the collision-free shortest path visiting
a sequence of n disk-shaped regions S in the presence
of polygonal obstacles O. Let S be S = (S1,...,50),
where the disk region S; is centered at ¢; € R? and has
radius §; > 0. Each j obstacle of m polygonal obstacles
0 = {01,... Op,} is represented by [; vertices, O;
{oj,... } o} € R?, forming a polygonal obstacle. Let p,
and p, be locatlons in R2 and 7(p;, p]) be the shortest path
among obstacles from p, to p], such as 7(p;,p;) N O = 0.
Then, L(pl,pj = ||7r pz,p] | denotes the length of the
shortest path, and we denote | p; — || for the Euclidean
distance between the locations p, and D,

The TRPO stands to determine a set of visiting locations
P = {p,,...,p,}, where for each S; € S, the visiting
location p, is within S;, ||p; — ¢;|| < 6;, and the sum of
lengths of the paths connecting two disks in the sequence
m(p,_1,P;), for 1 < i < m, is the shortest possible. We
denote the cost of the solution L(S), and the TRPO can be
formulated as the minimization Problem 1.

Problem 1 (Touring Regions Problem with Obstacles):

L(S) = rnFi)n Z;L:Q Hﬂ-(pi—hpi)H (D
st.  P={py,...,p,}, for1<i<n (2)
lp; —cil| <6, for1 <i<n 3)
7(pi_1,p;) NO =0, forl <i<n. (4)

A. Lower Bound Solution to the TRPO

We are primarily focused on the lower bound solution
to the TRPO, which is assumed to be faster to compute
than finding a feasible, eventually optimal, solution of the
TRPO. It is motivated by searching for the best sequence
regarding a solution to the H-TSPN and similar routing
problems. Quick to compute lower bounds might help to
reject unpromising sequences quicker than using heuristic
feasible solutions [19]. Therefore, we are looking for tight
lower bounds with low computational requirements.

(b) Case 2: Partially visible disks.

(c) Case 3: Fully blocked disks by obstacles.

Three cases of the solution to the shortest path between two disks in the presence of polygonal obstacles.

The lower bound LB(S) estimate does not necessarily
correspond to a feasible solution. However, it is always
lower or equal to the cost of the feasible (including optimal)
solution LB(S) < L(S). We define LB(S) as a sum of path
lengths between the consecutive regions in the sequence S.

Since the lower bound solution may be infeasible, we
define two locations for each region S; (except the starting
and termlnal ones): an exit location p{"* and an entry loca-
tion pi*. These represent the connecting path between two
regions. For example, a path from S;—1 to S; is from pP™y
to p;". Further, we denote the lower bound path connecting
two regions as m(p;, pj), which might be shorter than the
shortest path between the regions S; and S; when obstacles
are relaxed. Then, the lower bound cost estimate LB(S) of
the TRPO with & regions can be defined as
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where ||-|| denotes the length of the path in the question.

Note that a straightforward lower bound can be computed
using the Euclidean distance between the disks, reduced
by the disks’ radii, with relaxed obstacles. Besides, we
can determine a single location pi® = p2'* using SOCP
for a whole sequence of S, again without considering the
obstacles. Nevertheless, we intend to employ the shortest
collision-free path among obstacles between two disks as
the path 7y, which is studied in the following section.
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III. TWO-DISKS SHORTEST PATH IN THE PRESENCE OF
POLYGONAL OBSTACLES

The shortest path between two disks .S; and S in the
presence of polygonal obstacles is provided by analyses of
three distinguished cases based on the presence of obstacles
between them. We follow the idea of the shortest path
presented in [6]; however, we explicitly accounted for three
cases as depicted in Fig. 1. We further rely on available
(and precomputed) visibility graph between the disks’ cen-
ters instead of representing obstacles as barriers. It yields
a relatively straightforward and easy-to-compute shortest
path, which is not necessarily the case of the mixed integer
SOCP in [6]. The three individual cases are analyzed in the
following parts of the section.

A. Case 1: Visible Disks

We say that the disks S; and S are visible if the disks’
centers are visible. Thus, the shortest path is a line segment
connecting the disks and is a part of the line segment
connecting the disks’ centers as depicted in Fig. la.



The disks’ centers’ are visible if the line segment ¥ =
(ci,cj) connecting them does not intersect any obstacle,
which can be obtained from the visibility graph. Thus, there
is no intersection of any obstacles’ edges and ¥. The visiting
locations p; and p; to t_l)le disks can be determined as

U v

p; =¢i+ =0, Pp; =¢j — 0. (6)
17 S [

The shortest path connecting the disks is 7 = (p;, p;) and
the path’s length is L(7(p;, p;)) sz D; H

B. Case 2: Partially Visible Disks

Two disks S; and S; are partially visible if the disks’
centers are not visible, and there exists at least one line
segment directly connecting the disks; see Fig. 2. In this case,
the shortest path 7 connecting .S; with S; can be found using
the visibility graph G from disks’ centers, as in Fig. 1b.

Disks’ centers are not visible if an obstacle intersects
v = (¢;, ¢j), which is the line segment connecting the disks’
centers. If there exists at least one parallel line segment 7 to
¥ that passes through any obstacle vertex and intersects both
disks, the regions are partially visible. Then, the shortest path
m(c;, ¢j) can be found using the visibility graph as follows.

1) A visibility graph G = (V| E) is constructed from all
obstacles’ vertices o € O and disks’ centers ¢; and c;.

2) The shortest path 7(c;,c;) is found in G using Di-
jkstra’s algorithm and consists of ¢;, ¢; and a set of
vertices V = {0%,...,05}, k > 1 that lies between
the visiting locations to S; and S;.

We must determine the visiting locations p; and p; on the
disks’ borders to obtain the shortest path between the disks.

Using vertices o] and o}, we determine visiting locations as

*
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Note, that if £ = 1 then o] = o) = o™, which would be
the case depicted in Fig. 2.

Fig. 2. Intersection points (blue) of two circles (depicted as the only arc
in dashed blue) divide line segments into parts with the lengths l;, i, 15,
and l;., where I/ > 0 and l; > 0.

The path 7(p;, p;) is formed from at least two connected
line segments (p;,o07), and (o}, p;) and the path between
o}, 05, ie., m(oj,0}) found by search of G. The length
of the path is denoted as L(w (pz,pj)) llp; — ol +
L(r(0},0})) + o} — p; |- The path is considered the short-
est path since no shorter line segment directly connects the
disks visiting the vertices o7,0; € V. So, for any other
visiting location r; € S;, 7; # p; there is no shorter path
connecting r; with any o] € V and any o, € V with any

rj € 5, 1j # p; because [|(r; — o)|| + L(x (o, 0)) +
(0}, = 5)| = L(7(pi, p;))-

Proof: The existence of the shortest path can be proved
by constructing two circles, C; and C;. Let C; be a circle
centered at o} and with the radius I; = ||p; — o7]|, and C; be
a circle centered at o}, with the radius [; = H p; — o} H Thus,
L(m(p;,p;)) = li + ;. The intersection point of C; and the
line segment (r;,07) is denoted as 7 and the intersection
point of C; with (0, ;) is r’; = C;N(r;, of). Then, we can

express [|(r; — of)|| = [lr; - r;||+|\r —ofll = l|ri =il +
L and (o =7yl = [lof =)l + I — w5l = 1 +
| (ri — 0]+ (o — 7)|l < L(x(p;, p;))

and since L(m(p;,p;)) = li +1; we get

s = rill + 8+ 1+ [ — || < L+
that can hold only if 7} and ’; intersect the respective disks
that is in contradiction with 7; # p, and r; # p;. [ |

C. Case 3: Fully Blocked Disks

The disk-to-disk visibility is fully blocked by obstacle if
no parallel line segments 7 from the previous case can be
constructed. Then, the shortest path 7 between the disks
S; and S; can be determined using the visibility graph G,
similar to Case 2. Locations p; and p; can be obtained as

o] —¢; c;j
Y TR R I S MY
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where o] and oj is the obstacle vertex visited from ¢; and
c;, respectively. The length of the path is L(7(p;,p;)) =

% k .
lp; — oill + 21:2 Hof—l - 2 ’, where k is
the number of visited obstacle vertices.

Computational Complexity

In all three cases, we rely on an available visibility graph
that can be, for n disks and M vertices of the obstacles,
determined in O((n + M)?) using [20]. The query times
can be improved for just two-point queries using triangular
expansion, such as [21]. However, we further determine the
shortest paths between the disks’ centers using Dijkstra’s
algorithm run for each disk that can be bounded by O(n(n+
M)?log(n + M)). Then, the query for the shortest path
between two disks is the access to the precomputed shortest
paths between disks’ centers that can be done in O(1).

IV. LOWER BOUND METHODS

The shortest path between two disks is employed to
determine the lower bound for the TRPO. Since the path is
found based on three cases, we call the lower bound TriCase.
Besides, we include two relatively straightforward lower
bounds based on relaxing obstacles and using only Euclidean
distances between the disks. The most straightforward is the
usage of the Euclidean distances between the disks’ centers
in the Euclidean lower bound. Finally, we employ the SOCP
model in the SOCP lower bound. All three methods are
detailed in the following sections.



A. TriCase Lower Bound

TriCase lower bound is based on the shortest path between
two disks. For each of two consecutive regions S;_; and
S;, we determine the lower bound path 7, as the shortest
collision-free path between two locations p,_; and p; found
as a result of the shortest path. The location p,_; corresponds
to p?Y of S;_; and p; corresponds to pi* of S;. The lower
bound LB(S) is then computed directly using the paths’
lengths in (5). Hence, for the precomputed shortest paths,
the complexity can be bounded by O(n). The lower bound
is further referred to as LBrp,;.

B. Euclidean Lower Bound

For the Euclidean lower bound, we relax the obstacles and
the lower bound path mp, (p$™, pi*) between S;_; and S;
lies on the line segment ¥ = (c¢;_1,c;) connecting regions’

centers ¢;_1 and c;. The locations p;?Etl of S;_1 and pi»“ of

S; are determined as = 2
P =ci1+6ii=r, Pr=c¢+86i—. (9
o]l 7]l

The lower bound LB(S) is then directly computed using (5)
with the time complexity bounded by O(n). The lower bound
is further referred to as LBgyciid-

C. SOCP Lower Bound

The SOCP lower bound is also based on the relaxed
obstacles. The lower bound path 73, is determined as the
shortest connection of all regions in the sequence by solving
the SOCP model. For details, we refer the readers to [18].

Since only one location p, = (x;,y;) is determined for
each S;, the consecutive lower bound paths m,(p;_1,P;)
between two consecutive regions S;_1 and S; are connected,
and p, = p® = p? Once the visiting locations are
determined by the SOCP, the lower bound LB(S) is directly
determined using (5). Since the number of variables and
second-order cone constraints depends only on n, the time
complexity can be bounded by O(n?®) [22]. The bound is
further referred to as LBgocp. A single location p, per
region might yield tighter estimates of LBgocp compared
to TriCase and L Bgy.1;q as it is independent of the radius J;.

V. RESULTS

The proposed lower bounds to the TRPO have been
empirically evaluated in 32 randomly generated instances
of the TRPO. The SOCP-based lower bounds with relaxed
obstacles provide relatively tight bounds for instances with
sequences where line segments can directly connect the
consecutive disks in the sequence. Therefore, we propose
using the combined lower bound based on the maximum
of the provided estimates. The combined lower bound is
then employed to assess the sampling-based solution of the
TRPO, providing the relative optimality gap.

All methods are implemented in Python ver. 3.11, and
the SOCP is solved using Gurobi solver [23]. The visibility
graphs are computed using pyvisgraph library [24]. The
evaluation is based on the following performance indicators.

o The relative lower bound LB = LB/LBp,, where
LBpnax is the highest lower bound for the particular
instance among the computed lower bounds, L By.x =
IIlELX{LBTM7 LBSOCP}-

o The relative gap %G = (L' — LBpax)/LBmax 100% of
a feasible solution with the length L'.

o The real computational times 7' reported in seconds.
For aggregated results on the TRPO instances with the same
number of regions n, the indicators are reported as mean
values with the standard deviations computed from multiple
trials of the instances with the same n.

The rest of the results section is structured as follows. The
used instances and their creation are detailed in Section V-
A. Lower bound results are in Section V-B, and feasible
solutions are reported in Section V-C. The results are further
discussed in Section V-D.

A. TRPO Instances

Two types of evaluation of TRPO instances are used.
The first instances are based on routing scenarios reported
in [3] that include cases where regions are close by the
Euclidean distance but reachable by longer shortest paths
among obstacles. In particular, we chose polygonal scenarios
dense with n = 19 regions, jh with n = 22, and potholes
with n = 63. For each scenario, the sequence of visits to
n regions S is determined using 2-Opt [25] for regions’
centers and visibility graph.

The second type represents random instances with n re-
gions selected from the set n € {5, 10, 15, 20, 25, 28, 29, 30}.
The instances are created in random environments with m
obstacles m € {12,13,14,18,20} with up to four variants
for the same m denoted as random_{a,b,c,d}. Each
random instance is generated as follows.

e An 100 x 100 large area is divided into 50 convex

polygons using Voronoi diagram [26].

o From the generated polygons, in a random order, we
select mutually not connected polygons that form the
obstacle set O.

o For each remaining polygon, we determine its center
used as a center for the inscribed disk with the radius 6;.
If the disk does not intersect any obstacle O € O, the
disk is added to S.

o The sequence of regions is determined using disks’
centers and visibility graph by 2-Opt [25], or random
sequences are used.

An example of the instances is depicted Fig. 3.

B. Lower Bounds to the TRPO

First, we evaluate the lower bounds on the scenarios in
dense, jh, and potholes polygonal environments. The best
lower bound L By,ax and individual lower bounds are depicted
in Table I.

The results suggest the Euclidean distance is a relatively
poor lower bound, as expected. However, depending on the
shape of the environment, L Bgocp might be a tighter lower
bound than LBr,;. It is noticeable for the potholes instance
with relatively large open areas and dense regions, where
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(a) dense, n = 19 (b) jh, n = 22
Fig. 3.

(c) potholes, n = 63

(d) random_c, n = 25

(e) random_c-rnd, n = 25

Example of the TRPO instances with n disk regions in the polygonal environments. The environments dense, jh, and potholes are adopted

from [3]. The random_c environment is a randomly generated TRPO instance using convex partitioning based on the Voronoi diagram. Each instance is
depicted with a feasible solution obtained by Sampling (k = 8) (blue) and a lower bound solution (red) by TriCase. In the instances (a)—(d), the sequence
is determined by 2—-Opt using a visibility graph for disks’ centers. The instance (e) is a random sequence.

TABLE I
LOWER BOUNDS FOR THE TRPO INSTANCES IN ENVIRONMENTS [3].
L Bmax LBEuclid LBsocp LBry;
Inst:
nstanee LB  Taals] LB  Toasls] LB Tals)
dense, n = 19 7703.23 0.85 <1ms 0.93 0.01 1.00 <1lms

jhom =22
potholes n = 63

10 224.31  0.69 <ims 0.76 0.02 1.00 <ims
10 679.40  0.64 < 1ms 1.00 0.03 0.66 <ims

the error caused by passing obstacles is less significant than
the reduction of LBr,; caused by the addition of lengths of
independent shortest paths between two consecutive regions.
Since the computational requirements of LBr,; are negligi-
ble when shortest paths are precomputed, the longer lower
bound from LBrp,; and LBgsocp can be used as the L Bx.

0.954 o 2 i
o

0.904 i
° :

| LB, = LB/LBmax

2 0.80+

ot

15 20 25 28 29 30
No. of regions n

Fig. 4. Relative lower bounds LB, aggregated amount random TRPO
instances with sequences found using visibility graph and 2-Opt.

The impact of the environment shape and specific se-
quences is studied for aggregated lower bound values com-
puted for the random TRPO instances depicted as relative
lower bounds in Figs. 4 and 5. The tightest lower bound
LB, defines the baseline value 1.0. The results suggest
LBgocp and TriCase can vary significantly depending on
the sequence. Therefore, the combined LB, fits all cases.

The mean computational requirements are depicted in
Fig. 6, where VG — init denotes the required time to
determine the visibility graph.

C. Evaluation of Feasible Solution to the TRPO

The studied lower bound to the TRPO is employed in the
evaluation of feasible solutions that are obtained by uniform
sampling of each disk into & samples.

Hence, the feasible solution is denoted Sampling and
solutions are found for k € {4,8,16}. The visibility graph

5, T LBmax BB LBp,; BBl LBsocp EEE LBr,
= 1.04
Q
~
-~
Q
= 0.9
Il
€
2 0]
E o
2 .
2 0.7 o
5 o
£
£ 069
2
3
= 5 10 15 20 25 28 29 30
No. of regions n
Fig. 5. Relative lower bounds LB, aggregated amount random TRPO

instances with random sequences.

B [Bp,i; BB LBsocp HEE LBr,; 8 VG — init
= 10° = = S
o =
Z 1071
§ 10724
2109
%
)
0
o0
B
10~
5 10 15 20 2 2 2 30
No. of regions n
Fig. 6. Mean computational times 7" for random TRPO instances.

and shortest paths between the samples of two consecutive
disks in the sequence are determined. Then, the feasible
solution is found in the corresponding search graph using
dynamic programming in O(nk?). Aggregated results using
the relative gap are in Fig. 7 together with the computational

requirements.
EE Sampling (k = 4) 3 Sampling (k = 8) B Sampling (k = 16)
g200 1 : -2500
_g 17 -
] --znou:
i 15.0 I 5
ET 12.5 = 1500 ;
I E
=100 =)
] o -1000 €
Qs S
% 5.0 % % 500 :E
£ ° '
< 25 . Q
£ o -0
5 10 15 20 25 28 29 30
No. regions n
Fig. 7. Summary of the relative gap of the found solutions to the random

TRPO instances to the L Bmax depicted as the five-point summary.



D. Discussion of Results

The results suggest that the lower-bound methods’ perfor-
mance varies by instance. For sequences found using 2—-Opt
with straight-line-connectable disks, LBgsocp is typically
the tightest. On the other hand, L Br,.; provides better results
in the created random TRPO instances. These two cases
represent the late and early phases, respectively, of solving
TSP-like problems in the polygonal domain, where the visit
sequence is determined through combinatorial optimization.

However, the results on the feasible solutions in Fig. 7
indicate the lower bound is still relatively low compared to
the feasible solution found using £ = 16. The gap is in the
range of 2.5 % up to about 20 %, which provides a ground
for further research toward the optimal solution of the TRPO
and other routing problems in the presence of obstacles.

All lower bounds are fast to compute. While pre-
computing the visibility graph and inter-disk shortest paths
adds some overhead, it remains minor compared to the
overall cost of evaluating many sequences in TSP-like prob-
lems. The prototype Python implementation can be further
optimized, e.g., using C++ visibility graph computation [21].

VI. CONCLUSION

We present the lower bound methods for the TRPO, using
Euclidean distances and the newly proposed TriCase method
based on the shortest path between disks among polygonal
obstacles. Combining TriCase with SOCP-based bounds en-
ables effective evaluation of feasible TRPO solutions, e.g.,
those found by the sampling-based methods. Results support
using lower bounds in assessing TRPO sequences within
branch-and-bound frameworks and reveal the poor scalability
of sampling-based approaches as the number of samples &
grows. It highlights the need for more efficient approaches,
such as guiding sampling with lower bounds—similar to the
Iterative-Refined Inform Sampling (IRIS) [27], [19], [28].
The proposed approach is also easily extendable to 3D with
potential applications in the uncrewed aerial vehicles [29]
and underwater exploration [30].
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