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Abstract— In this paper, we address the sensitivity of the 3D
LiDAR-based localization to environmental structural ambigu-
ity. Although existing approaches employ additional sensors,
such as cameras and inertial measurement units, to account
for such ambiguities, multi-sensor localization is still an open
problem. Limitations are from the need to tune fusion param-
eters to compensate for limited ambiguity detection manually.
Therefore, we propose a feature-based localization method that
learns the fusion parameters using ground truth and thus
supports autonomous mobile robotic systems in new locations.
The method combines planar surface LiDAR features with
close and far camera features, and its further advantage is an
online adjustment of the feature weights based on the measured
environment ambiguity. The evaluation has been performed on
the existing M2DGR dataset and custom dataset with geomet-
rical ambiguities. The proposed method is competitive to or
outperforms the existing LiDAR-based methods F-LOAM and
LIO-SAM and the Visual-Inertial localization method VINS-
Mono. Based on the reported results, the proposed method is
a vital combination of LiDAR-based and visual features.

I. INTRODUCTION

Vehicle localization is a critical problem studied in the
context of autonomous navigation, especially in deployments
without access to the Global Navigation Satellite System
(GNSS), such as areas close to or under immense structures
that include bridges, tunnels, or urban canyons. In GNSS-
denied sites, a vehicle needs to use its onboard sensors to
localize itself, and two main approaches can be found in
the literature. If a prior map of the environment is available,
localization may benefit from the map when estimating the
robot pose [1]. However, when the map is not available, the
Simultaneous Localization and Mapping (SLAM) [2] is a de
facto standard approach to localize the robot within the map
being created by the robot’s exteroceptive sensors and range
measurements. Besides, the estimation of the robot’s relative
ego-motion is an essential part of robot localization. It is to
estimate the robot’s transformation from the previous robot
pose to the current one, and it is called odometry, regardless
of whether it is based on visual image processing or wheels
rolling.

Various onboard sensors can be used for localization. In
this work, we focus on multi-modal sensing of the Light
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Fig. 1. LiDAR and Visual-Inertial features. Gray cubes represent the
surface planar points map; black cubes are the current LiDAR features; green
spheres are close visual features; and red spheres are far visual features.

Detection and Ranging (LiDAR), camera, and Inertial Mea-
surement Unit (IMU). LiDAR-based localization uses scan-
to-scan or scan-to-map matching to estimate the ego-motion
in a structured environment where it can provide sufficient
performance [3]. However, it is sensitive to structure-less or
degenerated parts of the environment, such as long corridors
or open fields, where the scan alignment is ambiguous.
Moreover, a proper matching initialization is needed to
reach accurate results during rapid motions [4] that can
be addressed by combining LiDAR with IMU as in LIO-
SAM [5]. Ego-motion estimation from IMU measurements
is not affected by the robot’s surroundings, but it suffers from
accumulated drift, leading to a high localization error in the
long term. Therefore, cameras can be used in structure-less
environments to support the localization as visual informa-
tion might be robust against structural ambiguity despite the
need for the presence of texture on the seen objects.

Several methods [4] [6] [7] exist on multi-modal fusion;
however, their proper settings can be laborious, and it might
require a deep understanding of the particular method used.
Therefore, we propose a LiDAR-Visual-Inertial fusion ap-
proach to combine 3D LiDAR scans, monocular camera
images, and IMU measurements in odometry estimation that
dynamically adjusts the weights of the sensors by changing
the weight of the LiDAR features using measured structural
ambiguity of LiDAR scans. It is explicitly called LiDAR-
Visual-Inertial, as the IMU measurements are used in ex-
tracting 3D visual features from the camera images that are
later fused with 3D LiDAR features. However, the sensor
fusion is based on splitting visual features into far and close
features used for rotation and full transformation estimation,
respectively; see Fig. 1. Distance thresholds might be set
empirically; however, we propose to learn them together with



sensor fusion weights to achieve improved performance in
the target environment. In contrast with the LiDAR weight,
which is adaptive within one environment depending on the
current scan, the distance thresholds remain constant after
being learned. The focus of the paper is on learning the
fusion parameters to leverage the best out of the specific
feature sets. Therefore, the comparative study is against the
LiDAR method F-LOAM [8] and the Visual-Inertial method
VINS-Mono [9], which use the fused features but separately,
and not other LiDAR-Visual-Inertial fusion methods. The
main contributions of the proposed work are considered as
follows.

• A tightly-coupled sensor fusion system for the ego-
motion estimation with the adaptive fusion weights.

• A pipeline for the system to learn the fusion parameters
to improve system performance in target environments,
avoiding laborious empirical tuning.

The remainder of the paper is organized as follows. An
overview of the related localization and sensory fusion ap-
proaches is presented in the following section. The proposed
method is detailed in Section III. Achieved experimental
results and comparison of the proposed method with existing
approaches are reported in Section IV. Finally, the paper is
concluded in Section V.

II. RELATED WORK

Robot localization using onboard sensors is addressed by
various methods benchmarked in publicly available datasets,
such as KITTI [3]. Most of the top ten performing methods
in the KITTI odometry benchmark [10] are LiDAR-based
methods, including LOAM [11]. LOAM uses surface planar
and edge features to estimate the robot’s displacement as
LiDAR-based odometry has become a standard approach for
the LiDAR-based method, such as the LeGO-LOAM [12]
that adds ground segmentation, and F-LOAM [8], making
the method less computationally intensive. Although widely
used, the KITTI dataset is captured in a city with a lack of
challenging environments with high ambiguity of the LiDAR
measurements, which can be encountered in monotonous or
open areas, such as empty parking lots, fields, and areas
close to water surfaces. Hence, custom datasets are collected
for performance evaluation of state-of-the-art methods in
a particular type of environments [13] and [14].

The ambiguity of LiDAR measurements using visual and
inertial sensors is addressed in [15]. The combination is
also used for visual and visual-inertial odometry in ORB-
SLAM3 [16] and VINS-Mono [9]. Both methods are based
on extracting the visual features from the camera images,
tracking them among images, and estimating the camera
motion based on the tracked features. However, IMU mea-
surements can be used to determine the visual odometry
calculated from monocular camera images [9].

The LiDAR-Visual-Inertial (LVI) odometry is of primary
interest to take the best from each sensor by measurement
fusion. An extensive review of the multi-sensor fusion meth-
ods, including LVI-based SLAM, is provided in [17] with

two main classes of the LVI methods studied in the literature:
loosely coupled and tightly coupled.

In the loosely coupled approach, each sensor’s measure-
ments are processed separately and fused at the top. Thus,
the resulting estimation optimizes only measurements of one
among multiple sensors. The authors of [18] propose loosely
coupling of several localization sources. The first step of
the coupling is the sanity check, where localization failures
are identified for each localization source using the vehicle
dynamic model. Next, the non-failing localization sources
are scored by the Chamfer score, and the final localization
is selected as the best-scoring localization source. In [19],
the authors used short-term IMU-centric evaluation of each
localization source to select between Visual and LiDAR-
based odometry. Although a loosely coupled approach can
boost each algorithm and pick the best out of two sources of
odometry estimates, the measurements of the two sensors do
not complement each other to produce principally improved
results, which is important in the degraded scenarios. For
example, in a long corridor, the estimation in the longitudinal
direction would suffer from a high error using LiDAR data
due to the ambiguity. Hence, camera measurements are
preferred.

In contrast, tightly coupled approaches output pose es-
timation by jointly optimizing measurements of different
sensors. In [13], factor graph optimization is used for coarse-
to-fine estimation. The authors propose to detect a poorly
constrained direction of 6 Degrees of Freedom (DoF) (3D
position with orientations) optimization space of Lie group
SE(3) for each sensor (LiDAR, camera, and IMU). Although
the final estimation eventually accounts for all the sensors
used, the approach relies on the optimization-based degener-
ation detector that selects the specific sensor as a source of
optimization for each of the SE(3) directions. Therefore, in
the proposed approach, the measurements of all the sensors
are accounted for in all directions, and corresponding weights
are adjusted based on the contextual information.

A principally different approach is LIMO [20], which uses
pure visual features with the depth assigned from LiDAR
scans; however, it skips pure LiDAR features. Besides, se-
mantic information is considered when weighing vegetation
landmarks differently, as they might not be persistent in fea-
ture tracking. In LVI-SAM [4], 3D-LiDAR scans are used to
measure the depth of visual features, but the final estimation
is produced by the scan-matching with visual estimation as
an initial guess. The authors of [21] propose to use large
planar segments for optimization in combination with visual
features. The approach benefits from the high-level semantic
information of the LiDAR scan, but it is limited to structured
environments and ignores other semantic entries that appear
in LiDAR scans.

In existing LVI methods, sensory fusion parameters are
determined empirically, which puts high demands on user
knowledge of the particular localization system. Besides,
parameter tuning can be laborious in achieving the best pos-
sible results for a particular method in a given environment.
Black-box automatic hyperparameter tuning for odometry



systems is proposed in [14] using sequential model-based
optimization. Nevertheless, our proposed method learns the
parameters in the order that takes benefits from the pa-
rameters’ interdependencies. Further, fusion weights can be
determined by deep reinforcement learning [7]; however,
only fixed weights are learned. Therefore, we propose to
utilize dynamic weighting based on the contextual properties
of the features, allowing the weights to adapt to the current
situation.

III. PROPOSED LIDAR-VISUAL-INERTIAL ODOMETRY

The proposed method is based on a tightly coupled sensor
fusion of the 3D LiDAR, camera, and IMU measurements.
The method structure is depicted in Fig. 2. A sequence of
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Fig. 2. The architecture of the proposed method.

the camera images synchronized with IMU measurements is
processed by a visual-inertial feature detector and tracker,
which outputs a set of current 3D features. These features
are split into close and far sets based on their distance to
the camera and fed into the optimization module. The 3D
LiDAR scans are processed by the planar surface feature
extractor and scan ambiguity detector. The LiDAR features
are weighted based on the scene context and ambiguity.
The weighted LiDAR features are fed into the optimization
module to estimate the odometry from the joint weighted
visual and LiDAR features. The output of the odometry
estimation is the 6 DoF pose of the robot. The particular
parts are detailed in the following sections.

A. Visual-Inertial Features

Visual-inertial feature extraction is inspired by VINS-
Mono [9]. The features are detected using the Shi-Tomasi
corner detector [22] and tracked using the Kanade-Lucas-
Tomasi (KLT) tracker [23]. An example of the detected
features is shown in Fig. 3.

For each feature tracked between consecutive frames, the
3D position is estimated using [9]. The tracked features
are then used to estimate relative up-to-scale transformation
between the frames and 3D feature poses using a five-point
algorithm [24] and triangulation. The full bundle adjust-
ment [25] is used to refine the estimated transformations.

Fig. 3. Visual features in the fisheye camera image used in experimental
evaluation of the proposed method. Green: close features, Red: far features,
split with the threshold θvisual = 11m.

Then, the up-to-scale transformations and 3D feature po-
sitions are jointly optimized with the pre-integrated IMU
measurements using constrained graph optimization to fix
the scale. As a result, 3D feature positions with respect to
(w.r.t.) the pose of the robot are obtained for a camera frame
received at the time instant t as

Pt
vis = {pt

i; i = 0, 1, . . . , n;pt
i ∈ R3}.

The localized 3D visual features are split into close
features Pt

close and far features Pt
far based on the distance

from the camera as

Pt
close = {pt

close,i ∈ Pt
vis |

∥∥pt
close,i

∥∥ < θvisual}
Pt

far = {pt
far,i ∈ Pt

vis |
∥∥pt

far,i

∥∥ ≥ θvisual},
(1)

where θvisual is the distinguishing threshold for the feature
distance from the robot. It is assumed that close features
can be localized more precisely so that they can be used
for the estimation of the translation and rotation between
consecutive frames. For far features, the feature’s distance
from the camera is estimated less precisely; the far features
are used only for estimating orientation changes. The close
and far features can be seen in Fig. 3.

B. LiDAR Features

The planar surface LiDAR features are extracted from the
point cloud using [11] for each consequent LiDAR scan. The
set of features extracted at the time t is denoted as

Pt
LiDAR = {pt

LiDAR,i; i = 0, 1, . . . ,m;pt
LiDAR,i ∈ R3}.

An example of the planar features is depicted in Fig. 4.
The contribution of the features to the estimation of

the robot’s odometry is weighted based on the geometrical
properties of the robot’s surroundings. For example, when the
robot enters an open area, LiDAR features are treated as less
valuable than visual features since LiDAR features provide
less information about the robot’s motion. We introduce
the ambiguity factor A that reflects the asymmetry of the
distribution of the LiDAR features in 3D space to evaluate
the properties of the scene. It is computed as a ratio of
the smallest eigenvalue λmin of the covariance matrix CP ,



Fig. 4. LiDAR planar features cloud (red) and the rest of the points of the
original scan (green).

and the largest eigenvalue λmax, where CP is based on the
distribution of the LiDAR features

A =
λmin

λmax

CP =
1

NLiDAR

NLiDAR∑
i=1

pt
LiDAR,i · (pt

LiDAR,i)
T
. (2)

Based on the A value, we can distinguish three cases:
degenerated planar case, well-defined case, and transitional
case. Then, LiDAR features can be weighted differently de-
pending on the case. It is because, in a well-defined scenario,
the LiDAR features are more reliable than the visual ones,
thus having a maximum weight wmax

LiDAR. However, in the case
when LiDAR features form a plane, the LiDAR constraints
noise in poorly defined directions can affect the better-
defined visual optimization constraints. Thus, the LiDAR
features are down-weighted to a smaller weight wmin

LiDAR, but
still present in order to hold the planar constraint. In the
transition between the well-defined and degenerated cases,
the LiDAR features are gradually down-weighted using
linear interpolation. Specifically, the cases are defined by
comparing the degeneration factor A to the thresholds Amin

and Amax as follows.

wLiDAR =


wmin

LiDAR if A < Amin (degenerated)

wmax
LiDAR if A > Amax (well-defined)

lerp(A) if Amin < A < Amax (transitional)
(3)

where linear interpolation lerp is defined by

lerp(A) = wmin
LiDAR +

A−Amin

Amax −Amin
· (wmax

LiDAR − wmin
LiDAR).

(4)
The proposed ambiguity factor primarily detects open

areas, where localization using only LiDAR-based features
would be the most inaccurate.

C. Joint Optimization

Based on the three sets of the extracted features: Pt
close,

Pt
far, and Pt

LiDAR, we compute the displacement of the
robot pose ∆ξt between the time instants t − 1 and t of
the consecutive frames by the following optimization. The
optimization (5) minimizes the weighted sum of the cost

functions Jclose, Jfar, and JLiDAR that correspond to close
visual, far visual, and LiDAR features, respectively.

∆ξt = argmin
∆ξ

J(∆ξ)

J(∆ξ) = wcloseJclose + wfarJfar + wLiDARJLiDAR

(5)

The optimization objective for the close visual features Jclose
is the minimization of the Euclidean distances between the
observed landmarks ptclose, i and the corresponding landmarks
in the previous frame pt−1

close, i as

Jclose(∆ξ) =
∑
i

∥∥∆ξ · ptclose, i − pt−1
close, i

∥∥
2
, (6)

used to optimize the whole transformation formed from both
rotational and translational parts.

The optimization objective for the far visual features Jfar
is the minimization of the point-to-line errors eifar between
the observed landmarks ptfar, i and the 3D lines defined by the
robot’s position 0⃗ and the 3D positions of the corresponding
landmarks in the previous frame pt−1

far, i, expressed as

Jfar =
∑
i

eifar(∆ξ)

eifar(∆ξ) = epoint-to-line(∆ξ · ptfar, i, p
t−1
far, i, 0⃗).

(7)

Since far visual features have high uncertainty in depth, the
point-to-line error epoint-to-line is used instead of the Euclidean
distance. The translation part of the objective’s Jacobian is
manually set to zero to avoid optimizing the translation part
of the transformation.

The optimization objective for the LiDAR features
JLiDAR(∆ξ) is the minimization of the point-to-plane errors
eiLiDAR(∆ξ) between the observed LiDAR features ptLiDAR, i
and the 3D planes nt−1

LiDAR, i defined by three closest point
surface features in the LiDAR map

JLiDAR(∆ξ) =
∑
i

eiLiDAR(∆ξ)

eiLiDAR(∆ξ) = epoint-to-plane(∆ξ · ptLiDAR, i, n
t−1
LiDAR, i).

(8)

In (5), the LiDAR optimization objective JLiDAR is weighted
by the LiDAR features weight wLiDAR, which is computed
based on the ambiguity factor of the LiDAR features cloud
A.

The minimization according to (5) is performed using
Ceres Solver [26], searching for a 6 DoF transformation
describing the robot’s motion between the time instants t−1
and t. The Jacobians of the error functions are calculated
analytically for the sake of efficiency.

D. Parameters Learning

The parameters {θvisual, wfar, wclose, wmin
LiDAR, wmax

LiDAR, Amin,
and Amax} are learned using hyperparameter optimizer Op-
tuna [27] with the experimentally obtained sensory data from
the LiDAR, camera, and IMU further accompanied with the
ground truth trajectory of the robot.

We propose to optimize the parameters in the order: θvisual,
wclose, wfar, Amin, Amax, wmin

LiDAR, wmax
LiDAR. The motivation

is first to optimize the parameter that is used in splitting



the visual features θvisual. When the features are classified,
the importance of each feature type: wfar, wclose is opti-
mized. Further, the ambiguity thresholds Amin and Amax

are optimized to distinguish between the well-defined and
ambiguous LiDAR features. Finally, the LiDAR weights
values are optimized: wmin

LiDAR, wmax
LiDAR.

We propose to use a specific set of initial values that can
be used for an arbitrary environment. Features importance
is initialized to wfar = wclose = wmax

LiDAR = 1. The visual
distance threshold θvisual can be initially set to a suitable
value; however, it is not crucial as the optimization process
finds it. The thresholds for the LiDAR features Amin and
Amax are initialized to 0.0 so that every scan is weighted
as well-defined (with wmax

LiDAR) during the optimization of the
preceding parameters. The initial value of wmin

LiDAR is set to
a relatively small value of 0.5, which is important to be able
to optimize the ambiguity threshold. The parameters learning
is summarized in Algorithm 1.

Algorithm 1: Parameter Learning
Input: P0 – Ordered parameters set with initial

values, Dtrain – Training data.
Parameters: ERPE – Estimation function.
Output: P – Optimizated parameters.

1 RPE ← ERPE(P0, Dtrain)
2 P ← P0

3 for p ∈ P do
4 popt ← OPTIMIZE PARAM(p, P,Dtrain, ERPE)
5 P [p]← popt
6 RPEcurrent ← ERPE(P , Dtrain)
7 if RPEcurrent < RPE then
8 RPE ← RPEcurrent

9 else
10 P [p]← P0[p]

11 return P

The parameters are learned by minimizing the Relative
Pose Error (RPE) [28] between the ground truth and the
estimated poses, defined by the equation

Ei = (Q−1
i Qi+∆)

−1(P−1
i Pi+∆) (9)

where Q is SE(3) pose of the ground truth trajectory and P
is SE(3) pose of the trajectory estimate. RPE is a measure
that quantifies the local consistency of trajectory, which is
suitable for the estimation of a small portion of the robot
trajectory. We set ∆ to 1m to be able to train the parameters
on a small portion of the trajectory.

For minimization, the hyperparameter optimizer Op-
tuna [27] is used, which was initially designed for the opti-
mization of the hyperparameters of the neural networks. The
optimizer is based on the Tree-structured Parzen Estimator
(TPE) algorithm, which fits the Gaussian Mixture Model
(GMM) to the objective function and samples the next value
of hyperparameter from the GMM.

The Absolute Trajectory Error (ATE) [29] is used for the
test evaluation, as it quantifies the global consistency of the

trajectory, defined by the equation

Fi = Q−1
i SPi, (10)

where S represents the alignment of the trajectory estimate
and the ground truth. ATE is also used to compare the final
performance of the selected methods. Note that since the
total station outputs are only 3D poses of the robot without
orientation, the orientation is set identically to the trajectory
estimate. Thus, during the ATE evaluation, the orientation
error is not used; instead, we use the average of Fi translation
as the statistical performance indicator. For both ATE and
RPE, the final measure is computed as the RMSE (Root
Mean Square Error) of the translational parts of the errors
along the trajectory.

IV. RESULTS

The proposed method has been experimentally evalu-
ated in two datasets. The first is the publicly available
M2DGR [30] dataset, captured in an urban environment
with many obstacles and geometrical structures at various
distances from a vehicle. The second dataset is our Custom
dataset recorded in a large open field area, with obstacles
only at the area’s borders to challenge the proposed method
in a scenario that contains ambiguous LiDAR scans. Both
datasets are split into a training part and a testing part. The
training part is used to learn the parameters of the proposed
method, and the testing part is used to evaluate the odometry
estimation. The performance of the proposed methods is
compared with three state-of-the-art approaches.

In particular, we opted for F-LOAM [11] as a representant
of the LiDAR-based method, which inspired the employed
optimization. The vision-based method is represented by
VINS-Mono [9], from which the visual feature extraction
is utilized in the proposed method. Finally, LIO-SAM [5]
is selected for a comparison of the LiDAR-Inertial method,
and LVI-SAM [4] is included in comparison for the M2DGR
dataset as an existing LiDAR-Visual-Inertial method.

TABLE I
LEARNED PARAMETERS FOR BOTH DATASETS

Parameter M2DGR Dataset Custom Dataset

θvisual [m] 10.0 11.0
wclose 0.0 0.4
wfar 0.0 0.2
log(Amin) −20.0 −8.3
log(Amax) −20.0 −11.0

wmin
LiDAR 0.5 0.2

wmax
LiDAR 0.5 0.5

ATE and RPE [29] are used as the performance indicators.
The learned parameters of the proposed method are depicted
in Table I. The results achieved in the M2DGR and Custom
datasets are reported in the following sections.

A. M2DGR Dataset

For the M2DGR dataset, we opted for the longest ur-
ban sequence street02 with the length of 1.2 km. It
is recorded for the Velodyne VLP-32C LiDAR running



TABLE II
PERFORMANCE INDICATORS IN M2DGR DATASET

Method ATE [m] RPE [m]

F-LOAM [11] 2.82 0.07
VINS-Mono [9] 24.16 0.25
LIO-SAM [5] 3.60 0.05
LVI-SAM [4] 3.75 0.07

Proposed 2.72 0.06
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(a) Trajectories. (b) Bird’s-eye view

Fig. 5. Trajectories and bird’s-eye view of the M2DGR scenario, where
the training set is in blue and the test set is in green.

at 10Hz, a FLIR Pointgrey RGB camera running at 10Hz,
and 9-axis Handsfree A9 IMU running at 150Hz. For the
training set, the first 0.2 km long part of the sequence is
used; thus, the evaluation is performed for the remaining
1.0 km, as illustrated in Fig. 5. The achieved ATE and RPE
are listed in Table II, and projected position estimates are
depicted in Fig. 5.

The results in Table II suggest the proposed method
performs similarly to F-LOAM and LIO-SAM. The LiDAR-
based methods perform significantly better than VINS-Mono
since LiDAR measurements are precise and thus useful for
localization given the absence of alignment in ambiguous
areas.

LVI-SAM, which is an enhanced version of LIO-SAM by
fusion with a variation of VINS-Mono, performs worse than
LIO-SAM in the scenario. In contrast, as can be observed
in Table I, the usage of visual features is discarded for the
proposed method (parameters wclose and wfar are set to 0).
The results support the benefit of the learning procedure to
determine that the used visual features do not improve the
performance in such a well-structured environment as the
street02 sequence.

B. Custom Dataset

The custom dataset is tailored to include locations that are
challenging for the LiDAR-based methods. The dataset has
been collected using four-wheeled robot Clearpath Husky,
see Fig. 6a, with the LiDAR Ouster OS0-128 running at
10Hz, single camera of the fisheye stereo pair of the In-
tel® RealSense™ Tracking Camera T265 (T265) running at
30Hz, and Xsens MTi-30 IMU running at 200Hz. All the
sensors have been extrinsically calibrated w.r.t. the coordi-
nate system of the LiDAR.

The dataset has been collected in an open field of a parking
lot for two loops, see Fig. 6, with the total length of 160m.
The first 30m long part is used for training and the rest

(a) Used Clearpath Husky (b) Bird’s-eye view on a parking lot

Fig. 6. Used robot for Custom dataset collection and overview of the
deployment location with visualization of the data collection path with
highlighted training part in blue, testing part in green, and unused part
of the trajectory in gray.
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Fig. 7. Projected position estimates in Custom scenario.

for testing. The ground truth robot 3D position is captured
by the Leica TS16 total station with centimeter precision.
The performance indicators are depicted in Table III, and
the estimated trajectories are in Fig. 7.

TABLE III
PERFORMANCE INDICATORS IN CUSTOM SCENARIO

Method ATE [m] RPE [m]

F-LOAM [11] 13.00 0.37
VINS-Mono [9] 13.50 0.39
LIO-SAM [5] Fail Fail

Proposed 2.62 0.18

Fail indicates the method has not been able to produce reasonable results.

The results show that LiDAR-based methods LIO-SAM
and FLOAM performed relatively well until the robot
reached the open area and degenerated for the LiDAR
scan alignment. Then, both LiDAR-based methods failed to
localize the robot further due to insufficient information from
LiDAR scans. Specifically, LIO-SAM suffered from growing
position jumps, and F-LOAM tended to stay around the last
known position. VINS-Mono managed to estimate the robot’s
position for the whole path, including the open area, but
with a noticeable drift. The best results are achieved for the
proposed method that exploits the advantages of the LiDAR-
based and visual features when needed.

The training progress of the learned parameters is
further visualized in Fig. 8 as a sequence of train-
ing the particular hyperparameters in the order of
θvisual, wclose, wfar,Amax,Amin, w

min
LiDAR, w

max
LiDAR. A significant



(a) Relative pose error (b) Absolute trajectory error

Fig. 8. Progress for training particular hyperparameters in the defined
order on the Custom dataset. The training performance is in orange, and
the testing is in blue. Training ATE is not reported as it is not being used.

improvement of the test ATE can be noticed after training
the thresholds for the LiDAR ambiguity Amax and Amin. It
supports the proposed idea that accounting for the structure
of the environment is an important part of odometry esti-
mation. Moreover, training parameters based on RPE on the
training set also lead to a decrease in ATE on the test set,
which indicates that the learning procedure generalizes well
between the sets.

V. CONCLUSION

We propose a tightly-coupled LiDAR-Visual-Inertial
Odometry system that adapts the weights for the multi-modal
sensor fusion based on the ambiguity measure of LiDAR
scans. The developed localization system is parametrized
with the distance thresholds for the visual features and
quality of the LiDAR scan. The parameters are iteratively
learned one by one using real data with the ground truth
that shows to improve system performance in the target
environment. The performance of the proposed method is
evaluated in the M2DGR dataset and Custom dataset, which
includes degenerated for LiDAR scans alignment open area
environment. The results support the proposed ambiguity
factor successfully recognizing open areas. In future work,
we plan to focus on ambiguity factors in indoor environments
to address monotonous long corridors.
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