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Abstract—Sustaining the robot’s longevity becomes challenging
in dynamic deployments characterized by new unknown environ-
ments and embodiments outside of the prior knowledge. Hence,
the knowledge of robot-environment interactions needs to be
continually updated for system adaptation. It can be implemented
through self-verification as a continual comparison of predictions
with observations using the Predictive Coding (PC) principle. The
principle has been further extended into the Active Inference
Control (AIC) in biomimetic robotics to drive the control, state
estimation, and model update. However, continually updating one
model leads to catastrophic forgetting in the long term. Therefore,
we propose an autonomously expanding self-verifying world
model of sensorimotor dynamics utilized in model-based gait
control. The model combines PC with the incremental knowledge
representation based on the Internal Model (IM) principle. The
proposed method is experimentally validated in virtual and real
scenarios, where the hexapod walking robot has to recognize
and adapt to leg paralysis and then recognize the recovery.
The method generates novel behaviors in real-time, improving
the performance and outperforming the examined state-of-the-
art methods. Furthermore, the robot’s decisions and gained
knowledge are interpretable and promise further functional
scalability.

Index Terms—lifelong learning, locomotion, internal models,
predictive coding

I. INTRODUCTION

Lifelong, sustained locomotion requires continual adapta-
tion to the dynamic context given by the robot’s surrounding
environment and its body state. The physical properties of
the body change, especially in novel elastic and sustainable
designs using soft [1]-[3] and degradable materials [4]. The
body can also get damaged [5], heated [6], or dirtied that
together with terramechanical properties of the terrain [7]-
[9] affect the robot-environment interaction during terrain
traversal. Hence, the robot experiences multiple dynamic con-
texts [10] that need to be learned and recognized in real
time to produce appropriate locomotion behavior. Although
current walking robot controllers achieve impressive perfor-
mance [11], they often lack the ability to lose confidence
in own model and adapt to current dynamic context online.
For instance, traditional model-based controllers rely on pre-
defined parameters and struggle with unforeseen environ-
mental or physical changes, while learning-based approaches
require extensive retraining or large datasets to adapt to new
conditions. The proposed method addresses the limitations of
existing controllers by providing a computationally efficient
and biologically inspired framework for robust locomotion
in complex and uncertain environments. Such capabilities are
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TABLE I
SYMBOLS AND TERMS USED

Term Description

N Dimension of the motor commands.

M Dimension of the sensory modalities.

C Granularity of the sensorimotor embedding.

u=(u)¢ Gait as a sequence of motor commands u. € RY.

y=(y.)¢ Sequence of sensory values y. € RM.

f=(f.)¢ Internal model of embedded sensorimotor dynamics
fne(@) = bye + Wy (n— ') predicting the sensory value
of the mth modality at the cth gait phase given the gait u;
parametrized by the bias b, weight w,,., and point u’.

F Space of all possible internal models.

w World model W = {f'} C ..

u Efferent copy of the gait command the robot acted out.

D Sensorimotor data D = {(a,y)}.

X Robot’s state representation about the world.

xref Reference state desired by the robot.

p(f|D,x'f) IM posterior belief.

p(x|f,D,x™f)  State posterior belief.

p(ulx, £, D,x*") Gait posterior belief.

q(x), g(u) Recognition densities approximating posterior beliefs.

p(x,D|f,xf), Generative densities representing the robot’s assumption

p(u,x|D,f,x*) on how the evidence is generated.

F Free energy F = [ qlog% quantifying relation between
the recognition density ¢ and generative density p.

y,u Sensorimotor change derived from the data D.

f Sensorimotor change model derived from the internal
model fy, (1) = Wy 00

@) =0 Zero-model.

P e, ) Model likelihood.

Ly Log-odds between the ith and jth models on the mcth
sensory modality-phase L;;. = log 1”’8’:";5))

f* x* u* Selected model, state estimate, and acting gait.

LI Robot location and goal location on R2.

everyday realities in nature, where animals seamlessly adapt
to changing conditions through time-tested neural solutions,
motivating the biomimetic principles underlying our approach.

In Predictive Coding (PC) principle, the agent continually
applies Bayesian inference [12] to form a belief characterized
by prediction and certainty [13]. The quantitative theory of
PC is posited by Free Energy Principle (FEP) where, by
minimizing the free energy, the agent minimizes its uncertainty
(surprisal) over time [14]. In robotic deployments, the FEP
can be implemented as the Active Inference of the state
estimate [15] and the Active Inference Control (AIC) providing
robust motor control [16]-[18]. Under the PC, the controller
selects actions reducing the agent’s uncertainty. However, the
optimal actions depend on sensorimotor interaction unique to
dynamic context, and during the robot’s lifetime, multiple such
contexts need to be considered.

The neural management of multiple dynamic contexts is
researched in the Internal Model (IM) principle [19]. The
principle assumes that the agent’s hypothesis about sensori-
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Fig. 1. The proposed continual gait controller architecture for a hexapod
walking robot navigating toward a goal location. The robot uses the measured
sensorimotor data to update its state estimate and world model. The world
model is composed of Internal Models (IMs) that represent sensorimotor
entanglement explanations. If a sensorimotor disentanglement, represented by
the zero-model, becomes the best current explanation, a new internal model
is learned and added to the world model. The state estimation fuses sensory
measurements and model prediction into an estimate. The gait control is
regulated by the difference between the state estimate and reference.

motor interactions is encoded within IM: forward or inverse
model [20], [21]. The Modular Selection and Identification
for Control (MOSAIC) describes World Model (WM) as an
ensemble of expert IMs, where the control is based on the
model that explains the observed data best [22]. The ensemble
architecture has been examined in robotic deployments [23],
[24] showing flexibility and incremental scalability [25] for
new dynamic contexts. The IM ensemble provides a WM ar-
chitecture that manages multiple contexts, and the PC utilizes
the knowledge of the dynamic context. Although both PC and
IM principles provide powerful tools for scalable and robust
motion control, to the best of the authors’ knowledge, there is
little research on their relation and combined implementation.

We propose to utilize a model-based controller with a
self-improving WM as an expanding IM ensemble. The IM
ensemble self-verification and expansion are formulated as
a result of Bayesian inference, where an IM represents a
hypothesis of sensorimotor interaction with the probability
given by sensorimotor evidence. The robot thus selects the
most probable hypothesis for motor control. Further, we in-
troduce zero-model as a hypothesis of sensorimotor disentan-
glement representing the robot’s uncertainty in control that
is resolved by learning a new IM. The proposed method is
deployed on the hexapod walking robot, depicted in Fig. 1,
in the high-fidelity simulation based on the CoppeliaSim [26],
and real environment. The proposed approach is compared
with multiple model selection strategies in scenarios requiring
learning sensorimotor dynamics, recognizing damage, and
utilizing previously gained experience. The contributions of
the presented work are considered as follows.

1) We propose a novel combination of an IM ensemble and
AIC, enabling real-time lifelong locomotion. It allows
the robot to adapt to unforeseen situations using only
onboard hardware and collected data.

2) We formalize lifelong locomotion control as active
Bayesian inference on linear models, ensuring inter-
pretability [27]. Beyond adaptive behavior, the method
provides confidence estimates and generates decisions
and insights that are meaningful to human users.

3) We evaluate the lifelong capabilities through compar-
ative and real-world experiments, including scenarios
where the hexapod walking robot is partially paralyzed.
The comparative study, conducted in high-fidelity simu-
lations, demonstrates that the proposed method produces
interpretable results and advances the state of the art.
The real-world experiments showcase real-time contin-
ual learning, control, and self-verification, all computed
using onboard hardware.

The structure of the text is as follows. The next section
provides an overview of existing implementations of the AIC
and MOSAIC principles. Section III defines the continual
learning problem for gait control, formulated as an optimiza-
tion problem and solved using the proposed method detailed
in Section IV. The evaluation setup is outlined in Section V,
and the results are presented in Section VI. These results
are further discussed in Section VII, followed by concluding
remarks in Section VIII. Supplementary material includes
Appendix A, which derives the utilized AIC, Appendix B,
which details search space reduction and regularization, and
Appendix C, which provides additional experimental results.
Additionally, the supplementary material features a three-part
video documenting (i) hexapod locomotion bootstrapping, (ii)
continual adaptation in a simulated environment, and (iii) real-
world testing of the proposed method. A summary of the
symbols and terms used is provided in Table I.

II. RELATED WORK

The continual motor control is described as an interaction of
three processes: (i) model-based estimation, (ii) model-based
control, and (iii) model selection. The focus is on the AIC [28]
as the solution for model-based estimation and control, while
MOSAIC [22] is utilized as a theoretical framework for
model selection. The following sections briefly review both
approaches and existing results.

A. Locomotion and Lifelong Learning

In a lifelong setup, the robot experiences novel dynamic
contexts where the prior knowledge is not enough to sus-
tain the locomotion. The prior knowledge is present in all
controllers; the difference is in how general the knowledge
is and whether the knowledge can be updated in real time.
An example of prior knowledge injection is presented in [11],
where authors propose a powerful locomotion controller for
a quadruped robot that is trained pre-deployment in simulation
using a robot high-fidelity model, designed learning curricu-
lum, and extensive computational resources. The computa-
tional resources and model fidelity can be reduced, as shown
in [29], by encoding the task and morphology knowledge into
biomimetic controller architecture. The compact biomimetic
controller can then be tuned during deployment, contrasting
the pre-deployment learning in simulation, as shown in [30],



where the robot adapts to rough terrain in real time. While ro-
bust and reactive, the aforementioned controllers either do not
self-verify or update the prior knowledge without forgetting
and thus do not address the lifelong setup.

In lifelong learning and developmental robotics, incremental
knowledge scalability can be implemented by a model ensem-
ble. A new model, representing knowledge or skill, is added to
the ensemble without losing any previous capabilities, which
can make it robust to catastrophic forgetting. The fundamental
questions such a method has to solve are: how to (i) combine
(or choose) models and (ii) add a new model.

In [31], reinforcement learning is used to train a set of
specialized quadruped controllers with respect to (w.r.t.) exte-
roception that results in robust locomotion in unseen scenarios
with externally disrupted walking. Similarly, an exteroception-
based combination of reflexes is employed in robust hexapod
locomotion [32]. However, the exteroception-based combina-
tion requires pre-deployment knowledge of the association
between the exteroception and behaviors.

The model combination can be based on tracking the
performance of the models. In MOSAIC [22], IMs compete
for competency by comparing their prediction errors that are
further used for competency predictor training to inform the
model selection with the context cues, such as exteroception.
Transition probability between the models is introduced in [33]
to account for the previous selections in the model selection.
MOSAIC was tested on a simulated and real humanoid robot
in a sit-to-stand task [24] and heavy object carrying tasks [23],
respectively. Hence, MOSAIC shows to be a scalable world
model, with interpretable model selection and self-improve
selection by exteroceptive cues and previous model transitions.

Besides the model combination, recent studies focus on
rules for the addition of a new model. The authors of [25]
extend MOSAIC by introducing online IM learning triggered
by reference trajectory analysis, where the proposed primitive
motion identifier segments reference trajectory and label each
either by available IM or new IM.

In [34], the model probability is given by the prediction
error and Chinese Restaurant Process (CRP) that distributes
prior probability by the model selection frequency, where the
learning is triggered when the potential new model is more
probable than the previously selected ones. The authors of [35]
also utilize the CRP, but instead of using the prediction error,
the model likelihood depends on a sensory cluster parameter.
Both lifelong learning methods in [34], [35] evaluate the
model once per given task; thus, they are task-driven. In
contrast, a time-driven method is presented in [36], where
the model learning is triggered when prediction error growth
speed crosses a given threshold, which is evaluated every fixed
amount of time. The aforementioned approaches focus on
learning specific behaviors, such as walking left or right [36]
or locomotion at different speed levels [34], [35], where each
behavior is associated with a single model. However, the
predictive model itself can be used to infer a continuum of
behaviors in real-time by using model-based control, such as
the AIC.

B. Predictive Coding and Active Inference Control

In the PC paradigm, the nervous system information process
is similar to Bayesian infence [12], which is modeled as the
free energy minimization [14]. In visual data processing, the
PC is implemented as a multilayered predictive model [13]
utilized for sensory fusion and prediction. Sound source sepa-
ration from the mixed waveform is proposed in [37], where the
multilayered predictive model isolates the sound component
based on a video of a musical instrument being played. In [38],
the multilayered predictive model is extended with a recurrent
neural network, yielding superior results in predicting future
video frames.

In robotics, the PC is implemented as the AIC that con-
tinually updates the motor control and state estimation by
minimizing the free energy [28]. AIC deployments are re-
ported mainly for robotic manipulators. In [39], the Model
Reference Adaptive Control (MRAC) is compared with the
AIC in torque control of the manipulator with 7 Degrees of
Freedom (DoF). For both model-based controllers, a model is
trained in a simulator that is then used on the real manipulator
with additionally modified morphology to make the model
imperfect. While the MRAC is unable to cope with imperfect
models, the AIC robustly performs given tasks. The update
rules can be extended for variance parameters resulting in
adaptive dampening reference-error oscillations as observed
with the real 7-DoF manipulators [17]. The AIC can be further
extended by multi-sensor fusion [16] that outperforms existing
approaches based on model predictive control and impedance
control in scenarios with damaged 7-DoF manipulator.

Based on the literature review, the AIC provides robust
and adaptive control for manipulator robots. Therefore, we
propose to expand the AIC to control walking robots. In
particular, we focus on gait dynamics that introduce challenges
to hysteresis and phase-dependent behavior. The gait dynamics
can be modeled by the phase-embedded forward model, where
the phase is estimated by the central pattern generator [40].
To the best of the authors’ knowledge, the proposed approach
is the first model-based controller utilizing a self-improving
world model of gait dynamics.

III. GAIT CONTROL PROBLEM SPECIFICATION

Gait is a repetitive interaction of the robot with the environ-
ment, which can be adjusted w.r.t. the given reference state and
the sensorimotor measurements. The gait adjustment perfor-
mance is quantified by the performance error, as a difference
between the reference and true states, which improvement can
be derived from the sensorimotor interaction model. However,
neither the true state nor sensorimotor interaction model is
given, and the robot must infer Bayesian belief about the state
and model from observations.

Let denote the gait be a sequence of C motor commands
u = (u.)¢ and the posterior p(u|D,x™") represents the robot’s
belief that a gait u results in a state close to the reference x'°f
given the sensorimotor data D. From PC and IM principles,
we can assume the robot has an internal belief about the state



x and sensorimotor interactions f, from which the robot infers
the gait belief as

ll‘D Xret

ZZp u,x,f|D, xref) (D)

=Y ¥ n( u\x,f,D,x”f>p(x|f,D7x“’f>p(f|D,x”f)- )
f x

The proposed method is to approximate the three posterior
beliefs with the minimal statistics computed by the gait
control, state estimation, and model selection, respectively, see
Fig. 1. The phase-embedded forward model f used for the IM
implementation is briefly introduced in the following section.

A. Forward Model of Gait Dynamics

For repetitive systems, such as the gait dynamics, it is practi-
cal to represent the state trajectory segment, which is delimited
by the period of repetition, as a point [41]. In [42], the phase-
embedding transforms the sensory and motor signals into
embedded space, where a linear relation between the motor
and sensory embeddings is found. The phase-embedded model
encodes the non-linear, phase-dependent, and time-delayed
sensorimotor interactions into a set of regressors. Therefore,
the model provides an interpretable [27] and computationally
efficient forward model of gait dynamics.

The model is a function in phase-embedded sensorimo-
tor space f € .Z : RVC — RMC with N motors, M sensory
modalities, and embedding granularity C. The granularity
defines a segmentation of the gait period into C segments
[0,1) =UC< E , ¢)» Where c is the gait phase index. The gait is
represented as a sequence of C motor commands u = (u.)¢ €
RNC. Likewise, the sensory embedding is a sensory value
sequence y = (y.)¢ € RMC, Each sensory modality m at the
phase ¢ denoted y,,. is predicted by the gait regression f,,.(u).

In the present work, the regressor is linear f,.(u) = by +
Wpe(u—u’ ) with the bias b,,. and weight vector w,,. € RMC,
and point w'. The partial derivative a{;’”d is scalar w. describ-
ing relation between the nth motor ‘command at the phase
d and the mth sensory modality at the phase c. A detailed
description of the embedding process follows.

Phase-embedding transforms a trajectory segment of a vari-
able o € RY into a point a € RMC of the phase-space with
the granularity C. The embedding takes C equidistant samples
from the segment A(f) = (a(7))! =7 of a single period T. The
sampling is driven by the gait phase ¢(t) = 27tT~'mod 27
that, during its evolution, sequentially selects the correspond-
ing segment index c(r) [29]:

c(t) = argmgn(|exp{i¢(t)} _exp{ic/—l—O.Szn} . @
au(t) = {O‘(t) —au(t) if = e(t), W
0 otherwise,

with the imaginary unit i and norm |- |.

The embedding update rule (4) is evaluated concurrently
with the gait control. The embedding a(¢) = (a.)¢ thus repre-
sents the variable trajectory segment A(r). The embedding is
applied to motor and sensory signals, resulting in embeddings
u and y, respectively.

IV. PROPOSED LIFELONG ACTIVE INFERENCE

The proposed method is based on the premise that for
a given reference and sensorimotor data, the robot infers an ap-
propriate gait from continually updated beliefs about the state
and IM. The state estimate fuses the sensory measurements
with IM predictions. The robot selects IM, a hypothesis about
sensorimotor interaction that is supported by the measured
sensorimotor data. Following the IM principle [22], the IM
is selected from a WM, a finite IM ensemble. However, if
the robot encounters an unknown dynamic context, it should
select from beyond the WM and thus learn a new IM.

We propose to learn a new IM when the robot believes its
actions have no sensory effect and reformulate the gait belief
(2) to

p(u|D,xref) = Z:p(f|D7 x"h) Zp(u, X\f,D,X“’f)7 (5)
f X
where the inner sum is approximated by the AIC, and the outer
sum is approximated by the MOSAIC approach. The approxi-
mations give us the update rules for the selected model £*(22),
state estimate x*(12), and acting gait w*(13). The belief update
is visualized in Fig. 1. The proposed AIC and model selection
are detailed in the rest of the section.

A. Active Inference of the Gait Control

The state and gait are continually inferred from the given
sensorimotor data D, IM f, and reference xf. The inference
is a two-stage optimization process, where the state estimate
is inferred from data before inferring the acting gait from
the state estimate. The optimization is approximation of pos-
terior beliefs p(u,x|f,D,x"") = p(x|f,D,x"") p(u|x,f,D,x")
with recognition densities

q(x;x", &) = A (x;x", £7), (6)
(’I(U;U*vgu) :JV(U;“*&CM)v (7)
by finding means x*,u*, and variances *, {" of the respective

normal distributions. A relation between recognition density
and posterior is quantified by Kullback-Lieber (KL) divergence

D [a(x) 7] = /'q<x>1og(|§<;)xref)dx, ®
DKL Hp /CI u\x t(-ul)) Xref) ©)

Since the numerical optimization of both expressions is com-
putationally intractable, we recall FEP [14] and use the relation
between the KL divergence and free energy to express

Dkilg(x)]|p] = (10)
Dxu[q(u)|[p] = F" — (11)

where —log p(D|f,x"") and —log p(x|D,f,x"") refer to sur-
prisal for which the corresponding free energy F* and F* is
the upper bound. The minimization of free energy implicitly
minimizes the surprisal upper bound and approximates the
recognition densities to posterior beliefs.

By using the analysis developed in [28], we can derive
differentiable function forms of F* and F”. The free energy

F*—log p(D|f, xref)

log p(x|D, £, x™"),



is then optimized by finding the state estimate x* and acting
gait u* with the gradient descend

* = * * *
dxmc — fmc(u) “Xme | Yme " Xme  Xpe T bme

; (12)
dr ol ol O
* MC ref * * /
dunc _ Z x;nd ~ Xnd wie, — Upe — Une (13)
dr - x|u md ol ’
md O-md ne
flxo ylx

where Oy, Opme, and o, are standard deviations scaling
the respective contribution of the prediction observation and
sensory bias in the state estimation. The acting gait update is
proportional to the estimated performance error X' —x* com-
bined by the sensorimotor weight w” and regularized toward
the point w'. The standard deviation G;;l; is a hyperparameter
scaling the performance error sensitivity.

The derivations of the update rules (12) and (13) are detailed
in Appendix A of the supplementary material to keep the text
concise. Further, the gait-space reduction to harmonic motion
and regularizing gait toward symmetry in the robot’s lateral
movement is in Appendix B of the supplementary material.

B. Model Selection

Based on a given sensorimotor evidence, the model that is
best supported by the evidence is selected. Thus, the sum (2)
is relaxed to the model selection

£* = argmax p(f|D, x"), (14)
fe.7

where only the most plausible model contributes to (2). The

probability of the models f and f' is compared by log-odds

p(f|D,x"") p(D,x™[f)p(f)

=1 15
pEID.x) o) Y

where the model posterior is expanded by Bayes’ rule and
factor out p(D,x™!). The plausibility of f over f is then
determined by its likelihood and prior p(f).

Following the IM principle, we assume the prior is much
higher for IMs from world model W = {f'}, than for unknown
models % —W. Since prior always prefers the IM, two pair-
wise comparisons must be resolved by two types of likelihood
p(f|D,x™") comparisons. It is a comparison between IMs and
a comparison between unknown models, where we refer to the
former as model competition, and the latter as model learning.
The robot decides to select the model by learning when it is
uncertain about its action.

Let zero-model f* € W represent the hypothesis that the
action has no sensory consequence. If the robot believes that
an action has no sensory consequences, it implies that the robot
has no preference over actions, resulting in a uniform distribu-
tion over actions: p(ulx,f,D,x"") = uniform. Consequently,
as the zero-model becomes more plausible, the sum in (2) is
increasingly dominated by that uniform distribution over all
possible gaits. The dominance can be interpreted as the robot
becoming progressively more uncertain about its next action.
We assume that action uncertainty can be mitigated by learning
a better model of action-sensor entanglement. Therefore, the
robot decides to learn a new model when the zero-model
becomes more plausible than the IMs from the world model.

We implement the decision process by selecting the IM
with the highest likelihood and comparing it with the zero-
model. Let y and u represent the last sensorimotor change
extracted from the data D. Let £ = { £, }IV; £, (@) = w,,,11 be
the change model derived from the model f and define zero-
model as fO(i1) = 0ii. We reformulate the model likelihood

p(D,x"|f') into

p(xly, b, 1) p(yli, £) p(alf),

showing that the model likelihood depends on how well it fits
to reference, sensory data given motor data, and motor data
themselves. In the present work, we utilize only the second
term, probability of sensory observations, given the IM and
gaits. For the other terms, we assume the uniform distribution.

We assume the likelihood of normal distribution and inde-
pendence between sensory modalities [34]

(16)

POmeli,8) = A (e fre ()., 03, (17)
The ith model is compared to the jth model by log-odds
ij p@mcmafi)
Ly =log ———-=, (18)
" P(Ymelui, 17)

where LZC > 0 holds if the ith model is more plausible
explanation than the jth model for the measured mth sensory
modality at the phase c¢. For i > 0, we select the most likely
IM as

MC
i* = argm?xZZL%C

j mc

MC ) . i - 2
= argmin )| llog O + (ymc ) ’"C(u)> ] :
l

i
mc Opmec

(19)

(20)

The most likely IM i* is then compared with the zero-model
(). If ¥, LS;? exceeds a given tolerance threshold 0, the
robot decides to learn a new model. The model selection (14)
is thus implemented as a two-step comparison: (i) model
competition, where we select the most likely IM from W,
and (ii) zero-model comparison, where the most likely IM is
compared with the zero-model using

MC _ s f(E) 2
= argmjnz logo,,. + (W) , 21
! mc GmC
. 0,i*
= aigmaxf6<97 p(DaXref|f) if ch.Lmé >0 - (22)
f otherwise

The model learning argmaxge # p(D,x"|f) is performed by
linear regression over sensorimotor data D gathered during
motor babbling.

C. Integrated Algorithm

One time step of the proposed method is visualized in Fig. 2
and summarized in Algorithm 1 that is called every A, =0.01s
with the sensory reading ¥(t), efferent (motor) copy v(¢), and
reference x™/(¢). The algorithm output v(¢) is then sent to the
robot’s servos and used as the efferent copy in the next step
V(t+A) =v(t).
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Fig. 2. The data flow of the proposed method. The | and % nodes represent
numerical integration and derivation, respectively. The RND node generates
the random noise added to the acting gait that is increased during the learning
stage, producing the motor babbling.

Algorithm 1 Lifelong Active Inference of Gait Control

1: Input: Reference x™f, observation 7, efferent copy v.

2: Output: Motor command V.

39— ¢+2nT A,

4: ¢+ by (3)

5 ymem ¢ yem 4 (v ymemMA | see (4).

6: UM «— ulM 4 (Vv —ulM)A,, see (4).

7: if ¢ # ¢’ then > Phase segment switched.
8: ¢+ ¢ and fieam < Heam — 1.

9: Add (y™™, u™™) to dataset D.

10 if fiean < O then > Is in the performing stage.
11: Compute i* by (21) from W.

12: Compute L =Y, LY.

13: if ):mchf > 0 then © Starts the learning stage.
14: Hearn < Tiearn and clear dataset D.

15: f* < 1 and 6 < Oicarning.

16: else > Continues the performing stage.
17: f* «+ " and G < Gperforming-

18: end if

19: else if ¢, = 0 then > The learning stage ended.
20: Learn f' by linear regression over D.

21: f* < f and add f to W.

22: end if

23: Get Ax* and Au* from (12) and (13).

24: X* + x* + Ax* and u* < u* + Au*.

25: veuli+.4(0,0).

26: end if

27: return v

At Lines 3-6, the phase embedding is performed that
projects the time to the gait phase c¢. For each gait phase
change, the sensorimotor embedding is added to the dataset D
at Line 9, which is implemented as a circular queue, i.e., if
the queue is full, the new input overwrites the oldest. Besides
IM learning, the dataset is used for statistics extraction and
numerical derivation. At Line 10, we can distinguish two
lifecycle stages: (i) performing (fieam < 0) and (ii) learning
(flearn > 0)

In the performing stage, the IMs compete at Lines 11-13;
if the best IM is better than the zero-model, the best IM is
selected at Line 17. The selected model is then utilized in
model-based estimation and control performed at Lines 23

and 24. The gait command u* is then de-embedded at Line
25, where it is added random noise drawn from the normal
distribution with standard deviation & = Gperforming- It has been
empirically observed that adding the noise Operforming = 0.01
improves the IM prediction error evaluation with a nominal
effect on the motion properties.

The learning stage is initiated, if the best model is worse
than the zero-model, see Line 13. At Line 14, the data collec-
tion counter fjegm 1S set to Tjearn = 1200, which corresponds to
five minutes. During the motor babbling, the standard devia-
tion o is increased tO Ojeamning = 0.2 at Line 15 and the zero-
model is selected. By definition, the zero-model weights are
zero, w = 0, thus the gait command stops updating, Au® = 0,
at Line 24. The only change is induced by random noise at
Line 25, which creates sensorimotor observation stored in the
dataset at Line 10. The learning stage ends at Lines 19-21,
the new model is extracted using linear regression over the
dataset, which takes less than one second, and the new model
is added to the world model.

V. EVALUATION SETUP AND PERFORMANCE MEASURES

The proposed method is implemented' and tested on the
high-fidelity model of the hexapod walking robot [43] in the
CoppeliaSim [26] and demonstrated on a real robot, depicted
in Fig. 3, respectively.

ULtibia

(a) Simulated hexapod

Fig. 3. (a) The simulated hexapod walking robot with labeled legs. During
paralysis, up to two selected legs stop moving. (b) The real hexapod walking
robot, HEBI Daisy, with mounted Intel® RealSense™ Tracking Camera T265.
(c) Three leg joints, body-coxa, coxa-femur, and femur-tibia, are commanded
for the respective angles.

(b) Real hexapod

(c) Leg schema

While simulated and real hexapod walking robots have
different inertia and Kkinematics, their sensorimotor modalities
are the same in dimensions and semantics. The robot has six
legs, each actuated by three servomotors connecting the links
on body-coxa, coxa-femur, and femur-tibia joints, see Fig. 3c.
The robot learns to locomote its body by controlling the angle
of each joint; hence, N = 18. The robot’s sensory input consists
of heading and side velocities ypeaq and ygde, change of roll
Yrolls Pitch ypiteh, and yaw yyaw, and joint torques. Thus, the
overall number of sensory modalities is M = 23.

The sensory data are sampled at 10Hz and 100Hz for the
simulated and real robot, respectively, which is a limiting
factor for the gait period and its granularity. A shorter gait
period accelerates model learning, as more gait cycles can
be aggregated within a given time frame. However, it also
reduces the number of sensory samples collected per gait,

IThe sources are available at https:/github.com/comrob/laicg.
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making the algorithm more susceptible to outliers in the data.
Similarly, a higher granularity results in a smoother motion
but divides the sensory samples within the gait cycle. The
gait period is set to 7T = 1.04s, which is segmented with
the granularity C = 4 for the simulated robot, resulting in
10T /C = 2 samples per segment. Despite the low sample rate,
it showed adequate performance for small robots operating
in simulated environments. In contrast, the real robot uses a
granularity of C = 6, resulting in 1007 /C = 17 samples per
segment.

The evaluation scenario is robot navigation with tem-
porarily paralyzed robot leg(s) that is designed to evaluate
anomaly detection in locomotion and learning compensation
for the paralysis. The robot should also recognize recovery
when the paralysis is passed. The robot navigates toward
a given goal location by setting heading velocity and yaw
change references. The reference signals depend on the robot’s
position 1, roll &, pitch B, yaw ¥, and the goal location 1*,

xihalr) = max{[[1*[cos (1), 0}, @3)
Ao () =7* mod2m, (24)
e (1) = X0 (1) = xfien (1) = 0, (25)

where for 14 =1* —1, y* = arctan2(15,18), and y* = y* —
Y. Besides, the reference velocity and heading values are
limited to be within the intervals [0ms~',0.035ms~!] and
[~0.12rads~!,0.12rads~!], respectively. In simulated scenar-
ios, the goal location is set to I* = (—100m, —100m).

Every scenario run is initialized by pre-learned WM W = f!
obtained by repeating the performing and learning stage until
the (non-paralyzed) robot is capable of walking forward and
turning; see Part 1 of the video in supplementary material. For
clarity, we refer to f! as Walking IM. The scenario run is 3500
simulated seconds long, which corresponds to about one hour.
At the 10% of the scenario progress, t; = 350s, the robot’s
legs are paralyzed. The robot recovers at the 70 % progress,
tp = 2450s. Four particular scenarios, each with five trials, are
performed with different selections of the paralyzed legs: L2,
LIR2, L1R3, and L2R3 according to labels in Fig. 3a.

Reference model selection methods include Baseline with-
out any continual model learning and competitive world
model learning strategies in [34]-[36], [42]. The methods
are compared with the proposed prediction-based model se-
lection (21), (22) with the focus on the model selection.
Thus, all the evaluated continual controllers use the same
implementation of the gait controller (13) but have different
implementations of the model selection (14).

o Scheduled [42] adds one model per thousand seconds.
The method assesses the bootstrapping approach with the
reactive prediction-based model selection methods.

+ CRPpredictive [34] selects the best model by model
likelihood and prior probability based on the Chinese
Restaurant Process (CRP). The CRP prior distributes
more probability to the models that were selected more
often in the past:

i* = argmaxlog .4 (y;f'(u),6%) +1ogK'(1),  (26)

where K'(¢) is the number of gaits the model i was
selected until ¢, and constant deviation ¢ = 0.1. The
best model is then compared with potential new model
probability: p(y|u,f")6crppred, Where Ocrppred is a con-
centration parameter. Assuming the new potential model
always perfectly fits the data, p(y[u,f") = 1, the robot
decides to learn when the negative log-likelihood (NLL)
of the best model is higher than the potential new model:

- 10g JV(y’ fi* (ll), 62) - log Ki* (t) > — IOg QCRPpred-
(27

Moreover, each ith model has initialized K! = 300 corre-
sponding to the number of gait cycles used for training
one model.

CRPcluster [35] differs from CRPpredictive by calculat-
ing the model likelihood as the distance between observed
sensory data and dynamically updated cluster centroids
O i* = argmax; — ||y — ©/||> +logK’(¢). Each selection,
the centroids % are updated by weighted gradient with
the learning rate 1 = 0.01 as

AY' = g(i)2(y — ¥')n, (28)

where the weight ¢(i) is calculated as the softmax of the
model log-likelihoods. The centroids are initialized with
the corresponding model bias ¥ = b'. Similarly to (27),
the robot decides to learn when

ly =" || —logK" (t) > —1og Bcrperus:  (29)

L2norm [36] is an adapted prediction-based model se-
lection used in Surprise-based Behavioral Modulariza-
tion into Event-Predictive Structures (SUBMODES). The
model selection tracks the Euclidean norm of the predic-
tion error, ||y —fi(u)|, standardized by the error norm
mean u' and deviation 6’ measured during the ith model
learning and compared to the threshold 6fsnorm. When
the threshold is exceeded, as defined by:

l
W > 6L2r10rm; (30)
time-limited competition intervals are initiated among the
models. If the best predicting model has its standardized
error less than 6p 7,0, the model is selected; otherwise,
after the competition, a new model is trained. In the
preliminary study, a straightforward implementation of
the method consistently underperformed. Therefore, we
introduced a mechanism to track whether the ground
truth values change in the same direction as the predicted
values to address the issue. The introduced directionality
is quantified using an element-wise transformation:

—1 if x< —¢,
if x> &€, 31

0 otherwise,

sign®(x) =4 1

where € = 0.01 partitions the real values into intervals
and maps them to discrete values of —1, 1, or 0. The



transformation is applied to the sensorimotor change
errors, y —f'(u), as

Isign® (y) — sign® (£ ()) || — p’
Gl
With the modification, the L2norm algorithm achieves
performance competitive with the proposed method.

Method sensitivity tuning of the L2norm, CRPpredictive,
CRPcluster, and proposed model-selection algorithms have
been performed to ensure the fair comparison in the simulated
environment. In particular, the threshold parameters 6 (22),
GCRPpred (27)s 6CRP(:lus (29)7 and 9L2norm (30) determine the
sensitivity of learning decision. The thresholds were calibrated
by the same methodology using three navigation scenarios
without paralysis and measuring the decision signal (e.g.,
zero-model log-odds of the proposed or standardized error
of L2norm) and setting threshold as its boundary. The found
values are 6 = —0.022, log Ocrppred = —1.7, log Ocrperus = 5.1,
and Opoporm = 0.012. All tested methods trigger the learning
after exceeding the threshold for five consequent gait cycles.
The calibration ensures that learning is not triggered with-
out paralysis in either of the model selection methods. The
threshold values of each algorithm are set to be the same for
all scenarios and trials.

Evaluation metrics consist of three metrics derived from
the true performance as the Mean Absolute Error (MAE)
e(t) = (MC)~'|x™f —y|, and goal distance. From the perfor-
mance error, metrics are calculated from the MAE: (i) floating
average MAE of the last 25s: Ey(f) =25 ' Y22/ _,se(7) and
(ii) cumulative MAE Eqyn (1) = Y.i=( e(7). The floating MAE
characterizes the robot’s immediate performance and is usable
in analyzing the robot’s progress. The cumulative MAE and
goal distance metric measure the consequences of the robot’s
overall behavior.

> 6L2norm' (32)

VI. RESULTS

In the evaluation scenarios, the proposed and compared
methods locomote the robot toward the goal location, detect
and compensate for the leg paralysis, and recognize the leg
recovery. All six methods have been evaluated in four different
paralysis scenarios with five trials. The overall results show
that the proposed model has the best average ranking in
cumulative MAE and final goal distance, see Table II. Notably,
in the goal distance metric shown in Table III, the proposed
method obtains the best or second-to-best results. Moreover, in
113 out of 120 experimental runs, the robot sustains the motion
toward the goal location after paralysis, thus demonstrating the
robustness of the proposed gait controller.

In the L2L3 scenario metrics evolution, depicted in Fig. 4,
three scenario acts can be distinguished: (i) Walking ¢ €
[0,350), (ii) Paralysis ¢ € [350,2450), indicated by yellow
color in the plots, and (iii) Recovery ¢ € [2450,3500]. The
consequence of using only Walking IM can be observed
in Baseline performance where, during Paralysis, the MAE
reaches the highest values. After Paralysis, the MAE returns
to its original level; see Fig. 4. Thus, for Baseline, Walking
IM controls the dynamic context during Walking and Recov-
ery better than during Paralysis. Different behavior can be

TABLE 11
THE RANKING OF EACH METHOD AVERAGED OVER 20 TRIALS.
THE RANKING SIGNIFICANCE IS TESTED BY THE FRIEDMAN TEST, WHERE
P-VALUE < 0.005 FOR BOTH METRICS.

Method Cumulative MAE  Goal Distance
Baseline 4.7 4.1
Scheduled [42] 4.3 3.8
CRPpredictive [34] 2.8 5.0
CRPcluster [35] 3.2 3.1
L2norm [36] 3.4 3.3
Proposed 2.7 1.8

TABLE III
FINAL DISTANCE FROM THE GOAL LOCATION AFTER STARTING FROM
DISTANCE 144 m. THE BEST RESULTS ARE IN BOLD, AND THE SECOND
BEST ARE UNDERLINED.

Method L2/ m LIR2/m LIR3/m L2R3 / m
Baseline 54.1(0.2) 107.0(3.3) 41.1(1.0) 80.6(0.7)
Scheduled [42] 54.6(1.6) 85.0(8.2) 46.0(3.1) 74.1(4.9)
CRPpredictive [34]  60.8(18.1)  106.7(11.3)  55.7(13.0)  104.5(13.3)
CRPcluster [35] 34.9(10.2) 104.5(15.0) 41.7(1.6) 66.0(14.9)
L2norm [36] 52.0(5.0) 98.9(4.5) 40.5(1.9) 65.8(9.5)
Proposed 41.7(4.3) 90.0(23.6) 32.7(3.5) 50.2(5.1)

Average values with standard deviation in brackets among five trials.
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Fig. 4. Performance metrics evolution in the L2L3 scenario with the

evaluation metrics averaged over five experimental trials. The rows correspond
to three evaluation metrics: (i) the MAE averaged over the last second, (ii)
the cumulative sum of the MAE, and (iii) the reached goal distance. The
left column shows the evolution of the metrics with paralysis, indicated by
the yellow interval. The right column shows the final metrics statistics of
five trials for each evaluated method. The cumulative MAE evolution has
subtracted trend: E .y, (1) — 10z, to distinguish the results visually.

observed for other controllers, which implement incremental
learning, where the MAE is lower than for Baseline during
Paralysis. A scenario run of the proposed method adapting
to L2L3 paralysis is shown in Part 2 of the video in the



supplementary material.?

The improved performance of the incrementally learnable
controllers is further analyzed by observing their internal
behavior. In Section VI-A, it is shown that the performance
improvement is the result of the robot’s predictive capabilities,
where the robot recognizes the dynamic context changes. In
Section VI-B, the interpretability is demonstrated by showing
why the robot decided to learn a new model and how the
damaged legs can be identified from the model parameters. In
Section VI-C, it is shown that the decision capabilities translate
in the real world, where a large hexapod walking robot
recognizes damage (leg paralysis) while traversing through
rough terrain.

A. Performance Improvement by IM Management

The performance improvement follows the addition of a new
IM during Paralysis. We refer to the first model trained during
Paralysis, 2, as Paralysis IM. After 1500 s, all methods, except
Baseline, learned a Paralysis IM as shown in Fig. 5, and as
a result, the Performance MAE decreases under the value
of Baseline, see Fig. 4. However, observing the final goal
distance of CRPpredictive being higher than that of Baseline,
the incremental learning capability by itself is not sufficient.

For every gait, the robot must decide whether to learn or
not to learn. The late learning decision of Scheduled, after
1000 s in Fig. 5b, causes the robot to use an IM inappropriate
to the context, thus increasing MAE. However, CRPpredictive,
which is the fastest to recognize the context change as depicted
for the first babbling in Fig. Sc, is also too sensitive, and
the robot spends most of the time on motor babbling. More
moderate CRPcluster learns two models during Paralysis, see
Fig. 5d, resulting in the fastest locomotion during Paralysis
as is observable from the steepest slope in the goal distance
evolution Fig. 4. During the transition from Paralysis to
Recovery, the AIC infers behavior novel to the robot, which
is recognized by CRPpredictive and CRPcluster; however, the
methods do not recognize that the dynamics of the Recovery
are similar to Walking, which is not the case of L2norm and
Proposed.

Recalling IM for a similar context saves the robot’s time, as
IM learning costs five minutes of motor babbling. In the goal
distance metric depicted in Fig. 4, the motor babbling is visible
as a temporal slowdown, where only the L2norm and Proposed
methods sustain the goal approach speed. L2norm learns and
selects Paralysis IM during Paralysis and selects Walking
IM during Recovery, see Fig. 5e. Thus, L2norm learns only
one IM while being competitive to CRPcluster, which learns
three IMs. The distinguishing factor between L2norm and the
proposed method is the consistent timeliness of the model se-
lection: over multiple trials, the “using Paralysis IM” (fuchsia
triangles) and “return to Walking IM” (orange triangles) events
are scattered in Fig. Se but clustered in Fig. 5f. On average, the
L2norm method returned to Walking IM 395s after recovery,
while for the proposed it took only 154s. The proposed method
provides timely model selection and incremental learning that

>The duration of the video documented experiment is shortened to 1750
simulated seconds.

are shown to be crucial characteristics in embodied lifelong
learning.

B. Interpretability of the Decision and Damage Identification

For the L2R3 scenario, we analyzed the cause of the
learning decision, how the robot compensates for the paralysis,
and how the robot recognizes the recovery. The stages of
the experiment are depicted in Fig. 6 with the projected IM
selections on both the timeline and traversed path. The robot
starts with Walking IM, which keeps the zero-model log-odds
(black) in negative values, meaning that the zero-model is
less likely than Walking IM before the paralysis. After the
paralysis, the positive zero-model log-odds imply that the zero-
model is better than Walking IM at explaining the heading
velocity, which triggers motor babbling (highlighted by green).
The babbling results in Paralysis IM that has low values of the
L2 and R3 weights wy’5’, in Fig. 7, indicating disentanglement
between L2 and R3 leg joints and sensory modalities. The low
L2 and R3 weights cause the control rule (13) to ignore the
paralyzed legs. After the recovery, we can observe that the
log-odds between Paralysis and Walking IMs (fuchsia curve in
Fig. 6) are in favor of Walking IM; thus, the robot recognizes
the recovery.

By analyzing the weights of the phase-embedded model, it
is possible to recognize the properties of the dynamic context.
Comparing Paralysis IM to Walking IM in Fig. 7, we can
see that the coxa, femur, and tibia of the paralyzed legs L2
and R3 have little effect on the sensory measurement. We can
also observe the phase-dependency of the gait dynamics by
comparing Walking IM with Resting IM, which was learned
during motor babbling while standing still. The phase relation
between heading velocity and L2 coxa, wlﬁezdci)fa 4 Of Resting
IM shows that the positive command at the phase d results in
the positive heading velocity at the concurrent phase ¢ = d.
The symmetry is broken in Walking IM, where the command
has positive consequences only during the motor phases d =2
and d = 3, because during d =1 and d =4, the legs are in
swing, and changing the coxa angle during the swing has no
immediate consequences to the heading velocity. The delayed
sensory consequences are encoded by the values outside the
d = ¢ diagonal.

C. Real Robot Deployment

We demonstrate that the robot recognizes and adapts to
change in a real environment by studying the behavior of
the robot during paralysis and recovery. The proposed method
runs onboard computational resources with the Intel® Core™
i7-10710U processor, which is shown to provide sufficient
computational power. Similarly to the simulated setup, the
hexapod walking robot’s Walking IM is trained on a smooth
office floor, depicted in Fig. 3b, but then deployed outdoors on
rough tiled terrain (see Fig. 8a), which perturbs the locomotion
with up to 1 cm elevation differences. Paralysis IM is trained
outdoors with the rear left leg paralyzed.

We compare the following five scenarios where the robot
navigates forward: (i) with no paralysis, during rear left
leg paralysis, (ii) without and (iv) with Paralysis IM, and
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start (green square, each implies learning a new model), first Paralysis IM
selection (fuchsia triangle), and first Walking IM selection after Paralysis
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Sl = [Winotor 4 |/ K where K is the constant normalizing values to s € [0, 1].

After every labeled coxa joint, the two subsequent joints, the femur and the
tibia, are followed. The bottom row shows the detail of the phase relation
between the paralyzed leg’s coxa and heading velocity. The weight at the cth
row and dth column encodes the relationship between the motor at the cth
and sensor at the dth phase.

during recovery (iv) without and (v) with the capability to
recall Walking IM. During each 255s long scenario, the
robot navigates toward goal location 1* = (50m,0m) by track-
ing heading (23) and yaw (24) speed references limited to
[0ms~! 0.025ms™!] and [~0.03rads~',0.03rads ], respec-
tively. Unlike the simulated setup, both IMs generate con-
trol signals combined as u = (1 — y)u™alkingIM |,y Paralysis IM_
where y = sigm(50LP@asis M) i siomoid function of Paral-
ysis IM log-odds. In Figs. 8b and 8c, the goal distance and
log-odds evolution averaged from three experimental runs are
presented. The real environment scenarios are documented in
supplementary material in Part 3 of the video.

During the paralysis, see in Fig. 8b, Walking IM performs
worse than before the paralysis; however, the performance
improves after learning Paralysis IM. After the recovery,
Paralysis IM is unable to control the forward motion, and
only after Walking IM recall the robot is capable of locomoting
toward the goal, see in Fig. 8c. As expected, the robot traverses
a larger distance when the model corresponding to the dynamic
context is selected.



> \___ Che
w
—— No paralysis 245
—— Before learning s —— No recall
)

—— After learning —— Recall

Distance (m)
&

IS
S

a 40

o
o
N}

0.01

O 0.00 it — — = — — - — 4
-0.01

-0.02
50 100 150 200
Time (s)

(b) Paralysis

Zero-model
log-odds

Paralysis:Walking

50 100 150 200
Time (s)

(c) Recovery
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recovery at 130s. The behavior with (cyan) and without (blue) ability to recall
Walking IM is compared.

If the selected model does not correspond to the dynamic
context, the robot is capable of recognizing the discrepancy.
Before learning Paralysis IM, the zero-model log-odds in-
crease above the threshold during the paralysis, see Fig. 8b,
thus initiating the learning. Similarly, after the recovery, Paral-
ysis IM log-odds rapidly decrease; thus, Walking IM is more
influential during the motion control, which improves the per-
formance. Therefore, the real robot is capable of recognizing
and adapting to the shifting dynamic context.

VII. DISCUSSION

Lifelong deployment in the open world can expose robots
to experiences that are unavailable in pre-deployment models.
The results show that recognition of the novel experiences
and their continual adaptation sustains the locomotion over
multiple dynamic contexts. In the presented comparative study,
the proposed method provides the best performance due to its
timely and consistent decisions on model learning and model
selection. It is demonstrated that the robot’s decisions using
probabilistic reasoning, where the learned models contain
interpretable characteristics of the dynamic contexts. In the
rest of the discussion section, we provide comments on the
made observations.

A. Improving through Testing own Beliefs

A seemingly minor and yet insightful observation is that
the world model’s ability to falsify itself leads to performance
improvement. The observation supports the basic principle of
developmental robotics that the system must have the ability to
verify itself [44]. The common use of “verification” contains
both ideas of the confirmation, getting a result consistent with
the model, and falsification, trying to find an exception to
the model. However, while the controller confirms the model
by walking, the controller is not motivated to falsify the said
model. The confirmation mechanism itself is not sufficient for
the improvement as the controller can select only the actions

that are consistent with the model. Only after adding a slight
noise to the motor commands did the model selection behave
as expected: it switched IM only when the dynamics changed.
We conclude that by adding motor noise to the controller, the
robot continually tests and eventually falsifies its own beliefs,
resulting in world model improvement.

B. Limitation of the Motor Babbling

The data collection determines the quality of the world
model and the robot’s performance; hence, capturing the right
amount of data is crucial. The herein-used motor babbling is
an uninformed data collection that consumes a fixed amount of
time with the same data sampling methodology regarding the
context and current world model. However, the world model
has an awareness of which sensory modalities are surprising,
as it is reflected in the zero-model log-odds in Fig. 6, where
the heading velocity modality has higher log-odds during
babbling than yaw change. The informed data collection can
decrease the time needed to collect the data, which can be
achieved by tracking the observation novelty [45], [46], by
searching in the less dimensional goal space [47], or by
utilizing predictive models [48]. In future work, we plan to
investigate the utilization of the world model in informed data
collection to improve the data collection efficiency.

C. Generalizing the Model Selection

The focus of the presented study is on prediction-driven
model selection. Thus, the proposed method ignores evidence
at the disposal that can anticipate the appropriate IM even
before a sensory prediction error is detected. The model
likelihood (16) depends on the given reference as it is shown
in behavioral [36] or predictive [42] systems. By extending the
observed data D with exteroception, the robot learns patterns
between exteroception and selected IMs [33], thus gaining
the ability to predict (as opposed to detecting) the dynamic
context. Beyond the phenomena analysis, introspecting on
the history of selected models results in finding transition
patterns between IMs [33], [36]. In that context, the prediction-
driven model selection is not only a decision-making method
but also serves as a bootstrap for learning and utilizing the
decision anticipation. In future work, we plan to investigate
the integration of the other available evidence into the model
selection process.

VIII. CONCLUSION

Active gait control inference is proposed with an incre-
mentally growing world model. From the Internal Model and
Predictive Coding principles, we derive three stages of opti-
mization: selecting the model, estimating the state, and con-
trolling the gait. The proposed method is tested in simulated
and real leg paralysis scenarios, where the robot recognizes the
paralysis, compensates for the paralyzed leg, and recognizes
when the leg recovers in real time. The interpretability of the
robot’s decisions and knowledge is demonstrated when the
robot continually informs of its certainty and represents novel
knowledge in linear models, which can be further analyzed.



Moreover, the proposed probabilistic framework for model
selection can be easily scaled by other conditionals, improving
the growth of the world model. The continual world model
learning provides scalability in the robot’s reasoning, expand-
ing the robot’s longevity and operational domain in real time.
In future work, we plan to study the world model hivemind in
robot teams, which is essential for establishing a large-scale
sustainable ecosystem of evolving robotic deployments.

REFERENCES

[1] D. Drotman, S. Jadhav, D. Sharp, C. Chan, and M. T. Tol-
ley, “Electronics-free pneumatic circuits for controlling soft-legged
robots,” Science Robotics, vol. 6, no. 51, p. eaay2627, 2021. doi:
10.1126/scirobotics.aay2627

[2] J. Z. Ge, A. A. Calderén, L. Chang, and N. O. Pérez-Arancibia, “An
earthworm-inspired friction-controlled soft robot capable of bidirectional
locomotion,” Bioinspiration & Biomimetics, vol. 14, no. 3, p. 036004,
2019. doi: 10.1088/1748-3190/aae7bb

[3] M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi,
“Bioinspired locomotion and grasping in water: the soft eight-arm
OCTOPUS robot,” Bioinspiration & Biomimetics, vol. 10, no. 3, p.
035003, 2015. doi: 10.1088/1748-3190/10/3/035003

[4] F. Wiesemuller, C. Winston, A. Poulin, X. Aeby, A. Miriyev, T. Geiger,
G. Nystrom, and M. Kovac, “Self-sensing cellulose structures with
design-controlled stiffness,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 4017-4024, 2021. doi: 10.1109/LRA.2021.3067243

[5] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503-507, 2015. doi:
10.1038/nature 14422

[6] L. Simoni, M. Beschi, G. Legnani, and A. Visioli, “Friction modeling
with temperature effects for industrial robot manipulators,” in /JEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 3524-3529. doi: 10.1109/IROS.2015.7353869

[71 S. Godon, A. Ristolainen, and M. Kruusmaa, “An insight on mud
behavior upon stepping,” IEEE Robotics and Automation Letters, vol. 7,
no. 4, pp. 11039-11 046, 2022. doi: 10.1109/LRA.2022.3194667

[8] H.T. Tramsen, L. Heepe, J. Homchanthanakul, F. Worgétter, S. N. Gorb,
and P. Manoonpong, “Getting grip in changing environments: the effect
of friction anisotropy inversion on robot locomotion,” Applied Physics
A, vol. 127, no. 5, p. 389, 2021. doi: 10.1007/s00339-021-04443-7

[9] D. Belter, J. Wietrzykowski, and P. Skrzypczynski, “Employing natural
terrain semantics in motion planning for a multi-legged robot,” Journal
of Intelligent & Robotic Systems, vol. 93, no. 3-4, pp. 723-743, 2019.
doi: 10.1007/s10846-018-0865-x

[10] D. Valenzo, A. Ciria, G. Schillaci, and B. Lara, “Grounding context in
embodied cognitive robotics,” Frontiers Neurorobotics, vol. 16, 2022.
doi: 10.3389/fnbot.2022.843108

[11] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science Robotics,
vol. 5, no. 47, Oct. 2020. doi: 10.1126/scirobotics.abc5986

[12] D. C. Knill and A. Pouget, “The bayesian brain: the role of uncertainty
in neural coding and computation,” Trends in Neurosciences, vol. 27,
no. 12, pp. 712-719, 2004. doi: 10.1016/j.tins.2004.10.007

[13] R.P.N. Rao and D. H. Ballard, “Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects,”
Nature Neuroscience, vol. 2, no. 1, pp. 79-87, 1999. doi: 10.1038/4580

[14] K.J. Friston, J. Kilner, and L. Harrison, “A free energy principle for the
brain,” Journal of Physiology-Paris, vol. 100, no. 1, pp. 70-87, 2006.
doi: 10.1016/j.jphysparis.2006.10.001

[15] P. Lanillos and G. Cheng, “Adaptive robot body learning and estimation
through predictive coding,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 4083-4090. doi:
10.1109/IR0OS.2018.8593684

[16] C. Meo, G. Franzese, C. Pezzato, M. Spahn, and P. Lanillos, “Adaptation
through prediction: Multisensory active inference torque control,” IEEE
Transactions on Cognitive and Developmental Systems, vol. 15, no. 1,
pp. 32—41, 2023. doi: 10.1109/TCDS.2022.3156664

[17] M. Baioumy, P. Duckworth, B. Lacerda, and N. Hawes, “Active in-
ference for integrated state-estimation, control, and learning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp.
4665-4671. doi: 10.1109/ICRA48506.2021.9562009

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

C. Pezzato, R. Ferrari, and C. H. Corbato, “A novel adaptive controller
for robot manipulators based on active inference,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2973-2980, 2020. doi:
10.1109/LRA.2020.2974451

H. Imamizu, T. Kuroda, T. Yoshioka, and M. Kawato, “Functional mag-
netic resonance imaging examination of two modular architectures for
switching multiple internal models,” Journal of Neuroscience, vol. 24,
no. 5, pp. 1173-1181, 2004. doi: 10.1523/JNEUROSCI.4011-03.2004
M. Kawato, “Internal models for motor control and trajectory planning,”
Current Opinion in Neurobiology, vol. 9, no. 6, pp. 718-727, 1999. doi:
10.1016/S0959-4388(99)00028-8

M. Desmurget, C. Epstein, R. Turner, C. Prablanc, G. E. Alexander, and
S. T. Grafton, “Role of the posterior parietal cortex in updating reaching
movements to a visual target,” Nature Neuroscience, vol. 2, no. 6, pp.
564-567, 1999. doi: 10.1038/9219

D. Wolpert and M. Kawato, “Multiple paired forward and inverse models
for motor control,” Neural Networks, vol. 11, no. 7, pp. 1317-1329,
1998. doi: 10.1016/S0893-6080(98)00066-5

N. Sugimoto, J. Morimoto, S.-H. Hyon, and M. Kawato, “The emosaic
model for humanoid robot control,” Neural Networks, vol. 29-30, pp.
8-19, 2012. doi: 10.1016/j.neunet.2012.01.002

M. Emadi Andani, F. Bahrami, and P. Jabehdar Maralani, “AMA-
MOSAICI: an automatic module assigning hierarchical structure
to control human motion based on movement decomposition,”
Neurocomputing, vol. 72, no. 10-12, pp. 2310-2318, 2009. doi:
10.1016/j.neucom.2008.12.016

H. Haghighi, F. Abdollahi, and S. Gharibzadeh, “Brain-inspired self-
organizing modular structure to control human-like movements based
on primitive motion identification,” Neurocomputing, vol. 173, no. 3,
pp. 1436-1442, 2016. doi: 10.1016/j.neucom.2015.09.017

E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly V-
REP): a versatile and scalable robot simulation framework,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2013, pp. 1321-1326. doi: 10.1109/IROS.2013.6696520

A. Barredo Arrieta, N. Diaz-Rodriguez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsi-
ble AL’ Information Fusion, vol. 58, pp. 82-115, Jun. 2020. doi:
10.1016/j.inffus.2019.12.012

C. L. Buckley, C. S. Kim, S. McGregor, and A. K. Seth, “The free
energy principle for action and perception: A mathematical review,”
Journal of Mathematical Psychology, vol. 81, pp. 55-79, 2017. doi:
10.1016/§.jmp.2017.09.004

M. Thor, T. Kulvicius, and P. Manoonpong, “Generic neural locomotion
control framework for legged robots,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 9, pp. 4013-4025, Sep.
2021. doi: 10.1109/TNNLS.2020.3016523

J. Homchanthanakul and P. Manoonpong, “Continuous online adap-
tation of bioinspired adaptive neuroendocrine control for autonomous
walking robots,” IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 33, no. 5, pp. 1833-1845, May 2022. doi:
10.1109/TNNLS.2021.3119127

C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li, “Multi-expert learning
of adaptive legged locomotion,” Science Robotics, vol. 5, no. 49, p.
eabb2174, 2020. doi: 10.1126/scirobotics.abb2174

M. Thor and P. Manoonpong, “Versatile modular neural locomotion
control with fast learning,” Nature Machine Intelligence, vol. 4, no. 2,
pp- 169-179, 2022. doi: 10.1038/s42256-022-00444-0

M. Haruno, D. M. Wolpert, and M. Kawato, “MOSAIC model for
sensorimotor learning and control,” Neural Computation, vol. 13, no. 10,
pp. 2201-2220, 2001. doi: 10.1162/089976601750541778

Z. Wang, C. Chen, and D. Dong, “Lifelong incremental reinforcement
learning with online bayesian inference,” I[EEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 8, pp. 4003—-4016, Aug.
2022. doi: 10.1109/TNNLS.2021.3055499

T. Zhang, Z. Lin, Y. Wang, D. Ye, Q. Fu, W. Yang, X. Wang,
B. Liang, B. Yuan, and X. Li, “Dynamics-adaptive continual reinforce-
ment learning via progressive contextualization,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1-15, 2024. doi:
10.1109/TNNLS.2023.3280085

C. Gumbsch, M. V. Butz, and G. Martius, “Autonomous identification
and goal-directed invocation of event-predictive behavioral primitives,”
IEEE Transactions on Cognitive and Developmental Systems, vol. 13,
no. 2, pp. 298-311, 2021. doi: 10.1109/TCDS.2019.2925890

Z. Song and Z. Zhang, “Visually guided sound source separa-
tion with audio-visual predictive coding,” IEEE Transactions on



(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Neural Networks and Learning Systems, pp. 1-15, 2024. doi:
10.1109/TNNLS.2023.3288022

Z. Straka, T. Svoboda, and M. Hoffmann, “Precnet: Next-frame video
prediction based on predictive coding,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 35, no. 8, pp. 10353-10367, Aug.
2024. doi: 10.1109/TNNLS.2023.3240857

M. Tarokh, “Hyperstability approach to the synthesis of adaptive con-
trollers for robot manipulators,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 3, 1991, pp. 2154-2159. doi:
10.1109/ROBOT.1991.131947

R. Szadkowski and J. Faigl, “Hexapod gait control through internal
model belief update,” in International Symposium on Adaptive Motion
of Animals and Machines, 2023. doi: 10.18910/92290

H. Zhang, R. Chi, and B. Huang, “Data-driven internal model
learning control for nonlinear systems,” IEEE Transactions on
Neural Networks and Learning Systems, pp. 1-11, 2024. doi:
10.1109/TNNLS.2023.3331367

R. Szadkowski, M. S. Nazeer, M. Cianchetti, E. Falotico, and J. Faigl,
“Bootstrapping the dynamic gait controller of the soft robot arm,” in
IEEE International Conference on Robotics and Automation (ICRA),
2023, pp. 2669-2675. doi: 10.1109/ICRA48891.2023.10160579

M. T. Nguyenové, P. Cizek, and J. Faigl, “Modeling proprioceptive
sensing for locomotion control of hexapod crawling robot in robotic
simulator,” in 2018 Modelling and Simulation for Autonomous Systems
(MESAS), 2019, pp. 215-225. doi: 10.1007/978-3-030-14984-0_17

A. Stoytchev, “Some basic principles of developmental robotics,” IEEE
Trans. Auton. Ment. Dev., vol. 1, no. 2, pp. 122-130, 2009. doi:
10.1109/TAMD.2009.2029989

R. Der and G. Martius, “Novel plasticity rule can explain the de-
velopment of sensorimotor intelligence,” Proceedings of the National
Academy of Sciences, vol. 112, no. 45, pp. E6224-E6232, 2015. doi:
10.1073/pnas.1508400112

L. Pape, C. M. Oddo, M. Controzzi, C. Cipriani, A. Forster, M. C.
Carrozza, and J. Schmidhuber, “Learning tactile skills through curious
exploration,” Frontiers in Neurorobotics, vol. 6, 2012. doi: 10.3389/fn-
bot.2012.00006

A. Baranes and P.--Y. Oudeyer, “Intrinsically motivated goal exploration
for active motor learning in robots: A case study,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2010, pp.
1766-1773. doi: 10.1109/IROS.2010.5651385

P. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” [EEE Trans. Evol. Comput.,
vol. 11, no. 2, pp. 265-286, 2007. doi: 10.1109/TEVC.2006.890271



