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Abstract. In remote data collection from sampling stations, a vehicle
must be within sufficient distance from a particular station for a prede-
fined minimal time to retrieve required data from the site. The planning
task is to find a cost-efficient data collection plan to retrieve data from
all the stations. For a fixed-wing aerial vehicle flying with a constant for-
ward velocity, the problem is to determine the shortest feasible path that
visits every sensing site and ensure the vehicle is within a reliable com-
munication distance from the station for a sufficient period. We propose
to formulate the planning problem as a variant of the Close Enough Du-
bins Traveling Salesman Problem with Time Constraints (CEDTSP-TC)
that is heuristically solved by unsupervised learning of the Growing Self-
Organizing Array (GSOA) modified to address the constrained minimal
data retrieving time. The proposed method is compared with a baseline
based on a sampling-based decoupled approach, and the results support
the feasibility of both proposed solvers in random instances.
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1 Introduction

The studied data collection planning is motivated by the tasks where fixed-wing
aerial vehicles retrieve data from sampling stations using wireless communica-
tion. The data retrieval is possible only when the vehicle is within a sufficient
distance from a sampling station. Besides, the vehicle must be within the dis-
tance for a predefined minimal time to retrieve data with a limited data transfer
rate. The data collection planning problem with the fixed-wing’s motion con-
straints on the minimal flying velocity and limited vehicle turning radius can be
formulated as the Dubins Traveling Salesman Problem (DTSP) [22], where the
travel cost from one location to another location corresponds to the length of
the shortest curvature-constrained (Dubins) path.

Dubins path makes the DTSP a combination of combinatorial and continuous
optimization problems to determine the optimal sequence of visits to the target
locations and determine the vehicle’s heading angles at the locations since the
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length of the shortest path depends on the angles. Because of the underlying com-
binatorial TSP, the DTSP is also NP-hard [19]. The DTSP has been addressed by
several approaches, such as [22,17,1,13,21,4,26]. Challenging sequence-dependent
routing can be addressed by a decoupled approach, where the sequence of visits
is determined for the relaxed heading constraints. Then, optimal headings are
determined for the sequence using the Dubins path connecting the locations.
Besides, the problem can be discretized into purely combinatorial problems by
sampling possible heading angles into some finite locations.

In the motivational data collection, the communication range can be ex-
ploited in finding the optimal solution of visiting disk-shaped regions around
the sampling stations formulated as the DTSP with Neighborhoods [20]. Here, in
addition to the optimal vehicle heading angle at the data retrieval location, we
search for the optimal locations of visits to the regions (neighborhoods). Simi-
lar to DTSP, decoupled [22,17,25,15], sampling-based [2], and direct approaches
[18,26,11,12,16] have been proposed.

Although the DTSPN might yield shorter tours than using the DTSP with
the centers of the disk-shaped neighborhoods, the minimal required time the ve-
hicle spent within the station’s communication range is not guaranteed. There-
fore, a novel problem formulation is proposed to enable data retrieval by an
uninterrupted vehicle presence within the sampling station’s neighborhood for
the defined minimal time. The introduced problem is studied as the Close Enough
DTSP with Time Constraints (CEDTSP-TC) to highlight the disk-shaped neigh-
borhoods. The problem turns into determining two waypoint locations (entering
and leaving) for each region (disk), such that the waypoints are connected by
a minimal length path entirely within the region to retrieve all data.

We propose to address the introduced CEDTSP-TC by unsupervised learning
of the Growing Self-Organizing Array (GSOA) [6] already successfully deployed
in various data collection planning problems as variants of the TSP [9,10,8,3] pro-
viding competitive solutions to existing heuristic methods in short computational
times. The GSOA simultaneously determines the sequence of visits with the way-
points and headings [4] and can be relatively easy to modify to other problems,
such as addressing spatially correlated measurements [7]. For the CEDTSP-TC,
we need to address the minimal length path within the region.

The performance of the developed GSOA-based solution is compared with
a baseline decoupled sampling-based approach Centroid-TSP, where the se-
quence is determined as a solution of the Euclidean TSP (ETSP) using the
centers of the disk-shaped regions; then, waypoints are determined from a set of
sampled locations on the border of the regions, each with a set of sampled pos-
sible heading angles. Both approaches provide competitive results, but GSOA
outperforms the baseline method in computational time and solving instances
with a low number of samples.

The rest of the paper is organized as follows. The problem is formally defined
in Section 2. The proposed Centroid-TSP- and GSOA-based approaches are
described in Section 3 and Section 4, respectively. The empirical evaluation is
presented in Section 5, and concluding remarks can be found in Section 6.
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2 Problem Statement

The studied CEDTSP-TC is to find the cost-efficient curvature-constrained path
to visit a given set of disk-shaped regions such that the path passes the regions
with at least Lmin length to remotely collect data from the sampling station
located at the center of the disk. The curvature-constrained path consists of
a sequence of Dubins paths feasible for Dubins vehicle that moves forward with
a constant velocity v and has limited minimal turning radius ρ [5]. The vehicle
motion can be described by a state equation for a control input u asẋẏ

θ̇

 = v

cos θsin θ
u
ρ

 , |u|≤ 1, (1)

where (x, y) ∈ R2 is the vehicle’s position in the plane and θ ∈ (0, 2π] denotes
the vehicle’s heading angle at (x, y). The state of the vehicle is thus q = (x, y; θ)
and q is from the Special Euclidean group q ∈ SE(2).

(a) Example of the CEDTSP-TC instance
with the used notation.

(b) Dubins data collection path
path in the disk Sσi .

Fig. 1. An instance of the CEDTSP-TC with n = 4 target regions S depicted
in yellow (1a) together with its solution. The solution is the curvature-constrained
path (black) visiting S in the order Σ = (1, 4, 2, 3) at the configurations Q =
{qin

σ1
, qout

σ1
, . . . , qin

σn
, qout

σn
} (blue). The right subfigure (1b) shows a detail of Dubins path

within a region with the input configuration qin
σi

= (qin
σi
; θinσi

) and output configuration
qout
σi

= (qout
σi

; θoutσi
) that consists of points of visits pin

σi
and pout

σi
and corresponding

vehicle heading angles θinσi
and θoutσi

, respectively.

Dubins path between two configurations qi and qj is the shortest path satis-
fying constraints of Dubins vehicle (1). The path can be found as a closed-form
solution [5], and it consists of up to three segments of a straight line (S) and
circular arc (C) with the radius ρ. The arc can be a left (L) and right (R) turn
that gives up six possible combinations: LSL, LSR, RSL, RSR, LRL, and RLR.
The length of Dubins path is denoted L(qi, qj).

The CEDTSP-TC formulation follows the previous work [8] and is to visit
a given set of n disk-shaped regions S = {S1, . . . , Sn}, each Si ∈ R2 defined
by its center ci ∈ R2 and radius δi > 0. However, the data collection path is
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requested to pass each region’s Si with the minimal length Lmin, and such a part
of the path is entirely with the region. Then, the solution of the CEDTSP-
TC is a sequence Σ = (σ1, . . . , σn), σi ̸= σj , for i ̸= j, of visits to S and
a set of configurations Q denoting entering and leaving configurations of the
path to visit each region. For a region Si, the entering configuration is denoted
qin
i and leaving configuration qout

i . The path between the entering and leaving
configurations is at least Lmin long, L(qin

i , qout
i ) ≥ Lmin. The set Q can be defined

as Q = {qin
1 , qout

1 , . . . , qin
n , qout

n }. CEDTSP-TC is formally defined as Problem 1,
and a problem instance with the used notation is depicted in Fig. 1.

Problem 1 (Close Enough DTSP with Time Constraints (CEDTSP-TC)).

minimize
Σ,Q

L(qin
σn

, qout
σn

) + L(qout
σn

, qin
σ1
) +

n−1∑
i=1

(
L(qin

σi
, qout

σi
) + L(qout

σi
, qin

σi+1
)
)
(2)

s. t. Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n, σi ̸= σj for i ̸= j (3)

Q = {qin
1 , qout

1 , . . . , qin
n , qout

n } (4)

L(qin
i , qout

i ) ≥ Lmin, 1 ≤ i ≤ n (5)

qin
i , qout

i ∈ SE(2), 1 ≤ i ≤ n (6)

qin
i = (xin

i , yini , θini ), qout
i = (xout

i , youti , θouti ), (7)∥∥(xin
i , yini )− ci

∥∥ ≤ δi,
∥∥(xout

i , youti )− ci
∥∥ ≤ δi, 1 ≤ i ≤ n (8)

3 Decoupled Sampling-based Solution

The decoupled sampling-based approach Centroid-TSP decomposes the prob-
lem into the (i) determination of sequence Σ and (ii) configurations Q. The
sequence of visits Σ to S is determined from a solution of the ETSP instance
with centers of the regions and Euclidean distance connecting them, for exam-
ple, using the available GLKH solver [14]. The configurations Q are determined
by sampling each Si at the region border uniformly to ω locations, and for each
location, ω heading angles are uniformly sampled. Thus, each Si is sampled into
ω × ω configurations Qi = {qi

1, . . . , q
i
ω×ω}. The number of samples ω denotes

the sampling resolution, and increasing ω might lead to an improved solution.
For a sequence Σ and a set of sampled configurations Q, an oriented search

graph with 2n layers can be constructed as depicted in Fig. 2. The edges between
the nodes of consecutive layers denote Dubins path connecting the associated
configurations with the cost corresponding to the length of the path. If the path
connecting the entering and leaving configuration of the region is shorter than
Lmin, the edge does not connect the corresponding nodes, and its cost is set to
∞. The particular solution Q is found by finding the shortest path in the graph
using the dynamic program, whose complexity can be bounded by O(2nω6) [24].
Hence, the solution of the CEDTSP-TC is determined as a solution (Σ,Q) of
its discretized variant using ω2 samples.
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Fig. 2. An oriented search graph with 2n layers for n target regions of the CEDTSP-
TC. The red layers correspond to the regions’ input configurations and the green layers
to the output configurations.

4 Growing Self-Organizing Array for the CEDTSP-TC

The proposed method to the CEDTSP-TC is based on adopting the unsuper-
vised learning-based heuristic for routing problems GSOA [6], already applied
to Dubins routing problems in [8]. Therefore, only the GSOA summary is pre-
sented with a focus on the modifications needed to address the CEDTSP-TC.
Two variants of the GSOA applications to address the non-Euclidean problem
are proposed to demonstrate further prospective modifications. The learning
procedure is summarized in Algorithm 1 and works as follows.

Algorithm 1: GSOA for the CEDTSP-TC
Input: S = {S1, . . . , Sn} – a set of regions, Lmin – minimal path length.
Params. : G = 10 – the learning gain; α = 0.0005 – the gain decreasing rate;

µ = 0.6 – the learning rate; and imax = min(120, 1/α) – the no. of
learning epochs; that are set as suggested in [6].

Output: (Σ,Q) – found a solution.

1 N ← {ν1}, i← 0 // Initialize with geometric center
2 while i ≤ imax do
3 foreach Si in random permutation of S do
4 Select winner node ν∗ of N for Si

5 Insert ν∗ into N
6 foreach ν ∈ N with d distance from ν∗, where 0 ≤ d ≤ 0.2M do
7 Adapt ν toward ν∗.sp according to (10) with (11)

8 Remove nodes from N from the previous epoch
9 i← i+ 1, G← (1− iα)G

10 Construct (Σ′, Q′) by traversing N from the associated qin
i and qout

i

11 (Σ,Q)← (Σ′, Q′) if (Σ′, Q′) is shorter than (Σ,Q)

12 return (Σ,Q)

The GSOA is an iterative procedure where the solution is encoded as an array
of nodes N = (ν1, . . . , νM ). Each node νj is associated with its location νj ∈ R2

and heading θs ∈ [0, 2π), the target region Sσi
∈ S, the waypoint location

sp ∈ R2, ∥sp − cσi
∥ ≤ δσi

, at which the target is visited, and further with the
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input and output configurations qin
σi

and qout
σi

, respectively, where 1 ≤ σi ≤ n
denotes the label of the particular region for the sequence given by the array of
nodes. Starting with a single node in the array N = {ν1}, the node is initialized
to the geometric center of the instance with zero heading. For a single iteration
(a learning epoch), new nodes are added into N for each target that is selected
randomly from S to avoid location minima. The node is added as the most
suitable for the particular target (the closest point of the path represented by N )
and adapted toward the region. The added nodes have associated regions and
locations of visits. Therefore, all the previous nodes can be removed from N , and
a solution can be retrieved from the array after every epoch. The adaptation can
be repeated until the maximum number of iterations imax is reached.

(a) Winner node ν∗ outside of Si. (b) Winner node ν∗ inside of Si.

Fig. 3. Determination of the winner node ν∗ for the target region Si at ν∗ with the
points ps and sp, and configurations qin and qout. Dubins path between νj and νj+1

can be used to sample the heading angles during the adaptation.

A new node added to N is called the winner node ν∗ as it is determined
for the particular target Si as the closest point of the path represented by N
to Si as visualized in Fig. 3. Approximation of Dubins tour can be constructed
from the array N with M nodes using two consecutive nodes of N to determine
Dubins path (νj , νj+1), νM+1 = ν1. By iterating over all such Dubins paths, we
can determine ps together with the corresponding heading θs of the particular
Dubins path as the closest point to Si centered at ci. The location of the new
node ν∗ is set to ps, and its heading can be θs. The node ν∗ is added to N
between the corresponding nodes νj and νj+1, and declared to be the current
winner node. Besides, if ps is inside Si, we can set the associated waypoint sp
to ps. Otherwise, sp of the data collection path visits to Si is determined as the
intersection of Si border and segment (ps, ci) as depicted in Fig. 3a.

Since each region needs to be visited with at least Lmin length path entirely in
the region, the input and output configurations qin

i and qout
i , respectively, need

to be determined. For the initial employment of GSOA, denoted GSOA-naive,
we can utilize a similar approach to the Centroid-TSP and examine sampled
configurations Q = {q1, . . . , qω×ω}, where ω denotes the number of sampled
headings at each possible input and output locations. For simplicity, we can
utilize the uniform samples as in Section 3. Then, qin

i and qout
i are determined
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as the pair that minimizes the path length from the node νj to νj+1 as
qin, qout = argmin

q1,q2∈Q
L(q1,q2)≥Lmin

L(νj .qout, q1) + L(q1, q2) + L(q2, νj+1.q
in), (9)

where L(·, ·) denotes the length of Dubins path, and the path from q1 to q2 is
entirely inside the region, and its length is at least Lmin.

In the naive approach of GSOA-naive, Q is uniformly sampled. However, we
can exploit the exploration capability of GSOA by using the determined heading
angle θs of the winner node and sample k heading angles locally in the sampling
interval (θs−ε, θs+ε), where ε denotes the sampling range, and k ≤ ω, see Fig. 3.
Besides, θs is determined as the vehicle heading angle at the midpoint of Dubins
path from νj to νj+1. Then, qin

i and qout
i are determined according to (9).

Once the winner node ν∗ is added into N , it is adapted with its neighboring
nodes that are no more than 0.2M nodes apart toward Si, but only if ps is not
already inside of Si, i.e., ps ̸= sp, see Fig. 3b. Note that the size of the neigh-
boring nodes 0.2M denotes the activation bubble employed in one of the earliest
unsupervised learning approaches to the TSP [23]. The adaptation adjusts the
node’s location ν toward the waypoint sp of ν∗ as of

ν ← ν + µ f(G, d)(ps − ν), (10)
where µ is the learning rate, G is the learning gain, d is the number of nodes
between the adapted node ν and winner node ν∗. The neighboring function
f(G, d) [12] influences the power of adaptation as of

f(G, d) =

{
e−

d2

G2 if d < 0.2M

0 otherwise
. (11)

Since n new nodes are added to N in each learning epoch, the nodes from
the previous epoch are removed. Besides, the learning rate is updated to µ ←
(1 − iα)µ, where α is the gain decreasing rate, and i is the current number of
the performed learning epoch. A solution of the CEDTSP-TC can be obtained
after each learning epoch by traversing the array N and using the associated qin

and qout. The best solution found so far can be maintained during the learning.
We follow the parameterization of GSOA as reported in [6] that is selected

based on an empirical evaluation. The learning gain G is set to 10, the gain
decreasing rate α is set to 0.0005, and the learning rate µ is set to 0.6. The
maximal number of learning epochs is set as the smaller value of imax (imax =
120) or 1/α to ensure G is always above zero.

5 Empirical Evaluation

The proposed solvers (Centroid-TSP and GSOA) to the introduced CEDTSP-
TC have been empirically studied in solving 30 randomly generated instances
with δ ≥ Lmin. Each instance is denoted random_n_[a− e], where n corresponds
to the number of target regions n ∈ {5, 6, 7, 8, 9, 10}, and [a−e] denotes particular
instances with the same n. The turning radius is set to ρ = 1.0, the resolution
ω to {2, 4, 8, 16, 32}, the minimal required length to Lmin = 0.5, such as there
exists at least one configuration that follows (5). Besides, an ablation study is
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performed by comparing the performance of the GSOA with that of the GSOA-
naive to show the benefits of online sampling.

The solution quality is measured using relative length Lrel of the solution
cost found by a particular solver for a particular instance, Lrel = (L/L∗), where
L∗ is the best solution cost found among all examined solvers for the particular
instance, and L is the best solution length found for the particular instance
among all performed trials of the particular solver. The Centroid-TSP solver
employs the GLKH solver [14]. Since the GSOA is a stochastic algorithm, the
number of performed trials per instance is set to 10. The number of heading
angle samples in the GSOA-naive is ω as in the Centroid-TSP. However, the
GSOA uses k = 4 samples if ω < 8, otherwise k = 16, for the sampling range
ε = π/8 if ω < 8, otherwise ε = π/2.

The solvers are executed using the Intel® Core™ i9-13900K and the compu-
tational requirements are reported as the average required computational time
TCPU (in seconds) to obtain a single solution of a particular instance by the
solver. A summary of the results is depicted in Fig. 4.
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Fig. 4. Effect of resolution ω on the solution length Lrel and computation time TCPU [s]
depicted as the five-point summary.

The results indicate that the performance of the GSOA is competitive with
the Centroid-TSP. For solving instances with low resolutions ω, the GSOA
is more demanding than Centroid-TSP; however, GSOA benefits from on-
line sampling in comparison to GSOA-naive and Centroid-TSP for a dense
resolution above 16. Possible solution improvements of the GSOA compared to
the GSOA-naive are not significant, but GSOA-naive fails to find solutions for
ω > 16, while GSOA is less demanding, which might be further improved.
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6 Conclusion

A novel data collection planning problem with Dubins vehicle has been intro-
duced as the Close Enough DTSP with Time Constraints (CEDTSP-TC). It is
motivated by the practical need to retrieve data with limited data transfer speed,
which requires the data collection vehicle to be within the communication range
for a minimum data collection time. Two solution approaches are proposed: the
decoupled sampling-based method and unsupervised learning of the GSOA. The
reported results support the feasibility of both approaches. Although the de-
veloped GSOA heuristic provides competitive results with less computational
requirements than the decoupled method, the ablation study indicates further
improvements might be possible, which is a subject of our future work.

Acknowledgments. The work was supported by the Czech Science Foundation (GAČR)
under research project No. 22-05762S.
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